我们已经学习了怎样使用reshape函数,现在来学习一下怎样将数组展平。

(1) ravel 我们可以用ravel函数完成展平的操作:
In: b
Out:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9,10,11]],
[[12,13,14,15],
[16,17,18,19],
[20,21,22,23]]])
In: b.ravel()
Out:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23])

(2) flatten 这个函数恰如其名,flatten就是展平的意思,与ravel函数的功能相同。
不过,flatten函数会请求分配内存来保存结果,而ravel函数只是返回数组的一个视图(view):
In: b.flatten()
Out:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23])

(3) 用元组设置维度 除了可以使用reshape函数,我们也可以直接用一个正整数元组来设
置数组的维度,如下所示:
In: b.shape = (6,4)
In: b
Out:
array([ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9,10,11],
[12,13,14,15],
[16,17,18,19],
[20,21,22,23]],
正如你所看到的,这样的做法将直接改变所操作的数组,现在数组b成了一个6×4的多维数组。

(4) transpose 在线性代数中,转置矩阵是很常见的操作。对于多维数组,我们也可以这样做:
In: b.transpose()
Out:
array([[ 0, 4, 8, 12, 16, 20],
[ 1, 5, 9, 13, 17, 21],
[ 2, 6,10, 14, 18, 22],
[ 3, 7,11, 15, 19, 23]])

(5) resize resize和reshape函数的功能一样,但resize会直接修改所操作的数组:
In: b.resize((2,12))
In: b
Out:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[12,13,14,15,16,17,18,19,20,21, 22, 23]])
刚才做了些什么
我们用ravel、flatten、reshape和resize函数对NumPy数组的维度进行了修改。
动手实践:组合数组
首先,我们来创建一些数组:
In: a = arange(9).reshape(3,3)
In: a
Out:
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[ 0, 2, 4],
[ 6, 8, 10],
[12, 14,16]])

(1) 水平组合 我们先从水平组合开始练习。将ndarray对象构成的元组作为参数,传给
hstack函数。如下所示:
In: hstack((a, b))
Out:
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8,10],
[ 6, 7, 8,12,14,16]])
我们也可以用concatenate函数来实现同样的效果,如下所示:
In: concatenate((a, b), axis=1)
Out:
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8,10],
[ 6, 7, 8,12,14,16]])

(2) 垂直组合 垂直组合同样需要构造一个元组作为参数,只不过这次的函数变成了
vstack。如下所示:
In: vstack((a, b))
Out:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8,10],
[12,14,16]])
同样,我们将concatenate函数的axis参数设置为0即可实现同样的效果。这也是axis参
数的默认值:
In: concatenatel((a, b), axis = 0)
Out:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8,10],
[12,14,16]])

(3) 深度组合 将相同的元组作为参数传给dstack函数,即可完成数组的深度组合。所谓
深度组合,就是将一系列数组沿着纵轴(深度)方向进行层叠组合。举个例子,有若干张二维平
面内的图像点阵数据,我们可以将这些图像数据沿纵轴方向层叠在一起,这就形象地解释了什么
是深度组合。
In: dstack((a, b))
Out:
array([[[0, 0],
[1, 2],
[2, 4]],
[[3, 6],
[4, 8],
[5,10]],
[[6,12],
[7,14],
[8,16]]])

(4) 列组合 column_stack函数对于一维数组将按列方向进行组合,如下所示:
In: oned = arange(2)
In: oned
Out: array([0, 1])
In: twice_oned = 2 * oned
In: twice_oned
Out: array([0, 2])
In: column_stack((oned, twice_oned))
Out:
array([[0, 0],
[1, 2]])
而对于二维数组,column_stack与hstack的效果是相同的:
In: column_stack((a, b))
Out:
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8,10],
[ 6, 7, 8,12,14,16]])
In: column_stack((a, b)) == hstack((a, b))
Out:
array([[ True, True, True, True, True, True],
[ True, True, True, True, True, True],
[ True, True, True, True, True, True]], dtype=bool)
是的,你猜对了!我们可以用==运算符来比较两个NumPy数组,是不是很简洁?

(5) 行组合 当然,NumPy中也有按行方向进行组合的函数,它就是row_stack。对于两
个一维数组,将直接层叠起来组合成一个二维数组。
In: row_stack((oned, twice_oned))
Out:
array([[0, 1],
[0, 2]])
对于二维数组,row_stack与vstack的效果是相同的:
In: row_stack((a, b))
Out:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8,10],
[12,14,16]])
In: row_stack((a,b)) == vstack((a, b))
Out:
array([[ True, True, True],
[ True, True, True],
[ True, True, True],
[ True, True, True],
[ True, True, True],
[ True, True, True]], dtype=bool)
刚才做了些什么
我们按照水平、垂直和深度等方式进行了组合数组的操作。我们使用了vstack、dstack、
hstack、column_stack、row_stack以及concatenate函数。

【NumPy学习指南】day5 改变数组的维度的更多相关文章

  1. 【NumPy学习指南】day4 多维数组的切片和索引

    ndarray支持在多维数组上的切片操作.为了方便起见,我们可以用一个省略号(...)来 表示遍历剩下的维度. (1) 举例来说,我们先用arange函数创建一个数组并改变其维度,使之变成一个三维数组 ...

  2. NumPy学习指南(第2版)

    第一章 NumPy快速入门 首先,我们将介绍如何在不同的操作系统中安装NumPy和相关软件,并给出使用NumPy的简单示例代码. 然后,我们将简单介绍IPython(一种交互式shell工具). 如前 ...

  3. Numpy学习一:ndarray数组对象

    NumPy是Python的一个高性能科学计算和数据分析基础库,提供了功能强大的多维数组对象ndarray.jupyter notebook快速执行代码的快捷键:鼠标点击选中要指定的代码框,Shift ...

  4. 『Numpy学习指南』排序&索引&抽取函数介绍

    排序: numpy.lexsort(): numpy.lexsort()是个排字典序函数,因为很有意思,感觉也蛮有用的,所以单独列出来讲一下: 强调一点,本函数只接受一个参数! import nump ...

  5. NumPy学习2:创建数组

    1.使用array创建数组 b = array([2, 3, 4])print bprint b.dtype 2.把序列转化为数组 b = array( [ (1.5,2,3), (4,5,6) ] ...

  6. 『Numpy学习指南』Matplotlib绘图

    数据生成: import numpy as np import matplotlib.pyplot as plt func = np.poly1d(np.array([,,,])) func1 = f ...

  7. Numpy 学习之路(1)——数组的创建

    数组是Numpy操作的主要对象,也是python数据分析的主要对象,本系列文章是本人在学习Numpy中的笔记. 文章中以下都基于以下方式的numpy导入: import numpy as np fro ...

  8. NumPy学习笔记 三 股票价格

    NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...

  9. NumPy学习笔记 二

    NumPy学习笔记 二 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.<数学分 ...

随机推荐

  1. MSTAR SERVICE结构

    程序结构: 1.主线程的构建 appMain.c/appMain_Create(): 2.主线程服务构建  _appMain_Task() 清空服务: memset(_appMain.appList, ...

  2. CS231n 2016 通关 第五、六章 Batch Normalization 作业

    BN层在实际中应用广泛. 上一次总结了使得训练变得简单的方法,比如SGD+momentum RMSProp Adam,BN是另外的方法. cell 1 依旧是初始化设置 cell 2 读取cifar- ...

  3. 改变bootstrapSwitch按钮状态

    $('.switch-state').bootstrapSwitch('state',true);

  4. 4、css之position

    一.position position属性:指定一个元素(静态的,相对的,绝对或固定)的定位方法的类型. 1.fixed值 fixed值:生成固定定位的元素,相对于浏览器窗口进行定位.元素的位置通过 ...

  5. Angular6之ng build | ng build --aot | ng build --prod 差异

    由于写了大半年的项目终于要告一段落并且即将进行第二阶段优化开发,emmm 基础版本已经二十多个模块了,必不可少的优化是很重要的,尽管项目上使用多层嵌套懒加载,但是在首屏加载的时候,任然很慢啊,因为一直 ...

  6. Codeforces Round #439 (Div. 2)C - The Intriguing Obsession(简单dp)

    传送门 题意 给出三个集合,每个集合的元素数量为a,b,c,现在需要连边,满足集合内元素不可达或最短路为3,求可行方案数 分析 设dp[i][j]为a集合元素为i个,b集合元素为j个的可行方案,易知( ...

  7. spoj3105 MOD - Power Modulo Inverted(exbsgs)

    传送门 关于exbsgs是个什么东东可以去看看yyb大佬的博客->这里 //minamoto #include<iostream> #include<cstdio> #i ...

  8. 简单重载运算符in priority_queue By cellur925

    我们都知道priority_queue是大根堆. 一.变成小根堆 法一:把元素的相反数丢进堆中 法二 priority_queue<int,vector<int>,greater&l ...

  9. CSS中em,px区别(转)

    这里向大家描述一下CSS中px和em的特点和区别,px像素(Pixel),相对长度单位,像素px是相对于显示器屏幕分辨率而言的,而em是相对长度单位,相对于当前对象内文本的字体尺寸,相信本文介绍一定会 ...

  10. 大数(string 之间的快速幂)

    //字符串的乘法 string multi(string a, string b){ ], len = a.length() + b.length(); memset(arr, , sizeof ar ...