费马小定理:假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)

证明(copy的百度百科,加点自己的解释)

引理1.
  若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当a·c≡b·c(mod m)时,有a≡b(mod m)。
  证明:a·c≡b·c(mod m)可得ac–bc≡0(mod m)可得(a-b)·c≡0(mod m)。
     因为(m,c)=1即m,c互质,c可以约去(       x=a-b,  x*c=k*m(k∈Z),  (c,m)=1,  ∴c不提供m的因子,  ∴ x=k*m(k∈Z)         ),
     a– b≡0(mod m)可得a≡b(mod m)。
引理2.
  设m是一个整数且m>1,b是一个整数且(m,b)=1。
  如果a[1],a[2],a[3],a[4],…a[m]是模m的一个完全剩余系,则b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]也构成模m的一个完全剩余系。
  证明:(反证)
  若存在2个整数b·a[i]和b·a[j]同余即b·a[i]≡b·a[j](mod m)..(i>=1 && j>=1),
  根据引理1则有a[i]≡a[j](mod m)。根据完全剩余系的定义可知这是不可能的,
  因此不存在2个整数 b·a[i]和b·a[j]同余。所以b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]构成模m的一个完全剩余系。
构造素数 p  的完全剩余系 
因为  ,由引理2可得 也是p的一个完全剩余系
由完全剩余系的性质,
即     
易知   ,
同余式两边可约去

  

( 如引理1 ),

得到   这样就证明了费马小定理。 
 
 

费马小定理证明 (copy的,自己捋清楚)的更多相关文章

  1. 费马小定理&欧拉定理

    在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...

  2. 【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)

    (不会证明--以后再说) 费马小定理 对于任意\(a,p \in N_+\),有 \(a^{p-1} \equiv 1\pmod {p}\) 推论: \(a^{-1} \equiv a^{p-2} \ ...

  3. 逆元 exgcd 费马小定理 中国剩余定理的理解和证明

    一.除法取模逆元 如果我们要通过一个前面取过模的式子递推出其他要取模的式子,而递推式里又存在除法 那么一个很尴尬的事情出现了,假如a[i-1]=100%31=7 a[i]=(a[i-1]/2)%31 ...

  4. 读 CSI讲义 费马小定理

    费马小定理 最近在上计算机安全学选修课.. 读老师博客..现在当是写阅读笔记吧. 这里贴出老师的简书建议先看看链接先..毕竟我这些东西只是搞笑一下的.. 遵循一下这个原则… 观察 找规律 求证 首先是 ...

  5. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  6. HDU4704+费马小定理

    费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3    利用隔板定理可知,就是求(2^n-1)%mod-----Y    现在已知 ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. 51nod1119(除法取模/费马小定理求组合数)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...

  9. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

随机推荐

  1. C#中word文档转html

    var path = Request.Url.Host + ":" + Request.Url.Port + list[i].AnnexPath; //html保存路径 strin ...

  2. 异常-try...catch的方式处理异常2

    package cn.itcast_02; /* * A:一个异常 * B:二个异常的处理 * a:每一个写一个try...catch * b:写一个try,多个catch * try{ * ... ...

  3. 爬虫中什么是requests

    print(response.text) #响应的信息 print(response.headers) #获取响应头 print(response.status_code) #响应状态码 print( ...

  4. javascript是否像php一样有isset和empty?

    javascript是否像php一样有isset和empty? is set()在php中用于检测是否设置了变量木浴桶,函数返回布尔值true/false.在javascript中,您可以用替换它!( ...

  5. Tomcat项目自动部署脚本

    一般情况下使用的Linux环境都是加固的,root路径只有超级管理员权限才能进入.我们新建一个自己的用户,在/home下会有一个用户目录,传输war包都放在这个目录下,此时不动webapps文件下的内 ...

  6. linux学习笔记七

    #文件权限很重要,有些时候删除和新建文件没有权限根本操作不了,linux一切皆是文件,所以必须得了解下权限了. 文件的一般权限 简单的ls -ld 命令就能看到权限,dr-xr-x---补全应该是dr ...

  7. 网络初级篇之STP(实验验证)

    一.根桥的选举. 1.优先级相等时. (图1-1) (图1-2) 在上面1-1图中,已经标出桥的mac地址,桥的优先级为默认优先级(缺省:32768).任意一端口抓包,查看STP数据包内包含的信息,根 ...

  8. JS 对浏览器相关的操作

    // 获取浏览器 宽高 var width = window.innerWidth || document.documentElement.clientWidth || document.body.c ...

  9. OI视角浅谈布隆过滤器

    简要谈及布隆过滤器 Preface 不负责的出题人扔了一道5e5,2M卡内存的题,标算布隆过滤器,然而std自己用std::set 70M碾过去了. 没学OI时候草草看过这个,不过忘得差不多了. 今天 ...

  10. maven项目bulid失败_No compiler is provided in this environment.

    错误信息如下: [ERROR] No compiler is provided in this environment. Perhaps you are running on a JRE rather ...