费马小定理:假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)

证明(copy的百度百科,加点自己的解释)

引理1.
  若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当a·c≡b·c(mod m)时,有a≡b(mod m)。
  证明:a·c≡b·c(mod m)可得ac–bc≡0(mod m)可得(a-b)·c≡0(mod m)。
     因为(m,c)=1即m,c互质,c可以约去(       x=a-b,  x*c=k*m(k∈Z),  (c,m)=1,  ∴c不提供m的因子,  ∴ x=k*m(k∈Z)         ),
     a– b≡0(mod m)可得a≡b(mod m)。
引理2.
  设m是一个整数且m>1,b是一个整数且(m,b)=1。
  如果a[1],a[2],a[3],a[4],…a[m]是模m的一个完全剩余系,则b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]也构成模m的一个完全剩余系。
  证明:(反证)
  若存在2个整数b·a[i]和b·a[j]同余即b·a[i]≡b·a[j](mod m)..(i>=1 && j>=1),
  根据引理1则有a[i]≡a[j](mod m)。根据完全剩余系的定义可知这是不可能的,
  因此不存在2个整数 b·a[i]和b·a[j]同余。所以b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]构成模m的一个完全剩余系。
构造素数 p  的完全剩余系 
因为  ,由引理2可得 也是p的一个完全剩余系
由完全剩余系的性质,
即     
易知   ,
同余式两边可约去

  

( 如引理1 ),

得到   这样就证明了费马小定理。 
 
 

费马小定理证明 (copy的,自己捋清楚)的更多相关文章

  1. 费马小定理&欧拉定理

    在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...

  2. 【初等数论】费马小定理&欧拉定理&扩展欧拉定理(暂不含证明)

    (不会证明--以后再说) 费马小定理 对于任意\(a,p \in N_+\),有 \(a^{p-1} \equiv 1\pmod {p}\) 推论: \(a^{-1} \equiv a^{p-2} \ ...

  3. 逆元 exgcd 费马小定理 中国剩余定理的理解和证明

    一.除法取模逆元 如果我们要通过一个前面取过模的式子递推出其他要取模的式子,而递推式里又存在除法 那么一个很尴尬的事情出现了,假如a[i-1]=100%31=7 a[i]=(a[i-1]/2)%31 ...

  4. 读 CSI讲义 费马小定理

    费马小定理 最近在上计算机安全学选修课.. 读老师博客..现在当是写阅读笔记吧. 这里贴出老师的简书建议先看看链接先..毕竟我这些东西只是搞笑一下的.. 遵循一下这个原则… 观察 找规律 求证 首先是 ...

  5. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

  6. HDU4704+费马小定理

    费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3    利用隔板定理可知,就是求(2^n-1)%mod-----Y    现在已知 ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. 51nod1119(除法取模/费马小定理求组合数)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...

  9. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

随机推荐

  1. Android 直连SQL

    在工作中遇到需求需要Android直接连接SQL,看了一些人说不建议直连,但我对性能没有要求,甚至说只要在局域网内能够使用就行,简单说把手机当作一个简单的移动操作点. 代码的话,网上都有比如: htt ...

  2. A Pythonic Card Deck: __len__ & __getitem__ & for 循环的嵌套

    1. 列表生成式的嵌套 for 循环: 示例如下: li1 = range(1,6) li2 = list("ABC") # list("ABC") 的结果为 ...

  3. 如何将编译后的文件打包成jar文件

    如果需要修改像spring和dubbo中的jar包源码,修改后怎么打包呢? 如下: 1.win+r进入命令行: 2.找到需要打包的class文件: 3.jar -cvf [jar包的名字] [需要打包 ...

  4. Redis教程(REmote DIctionary Server)——一个高性能的key-value数据库

    redis(REmote DIctionary Server)是什么? Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言 ...

  5. [转] TextCNN调参技巧

    原文地址: https://plushunter.github.io/2018/02/26/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86 ...

  6. promises的深入学习

    Promise 的含义 § ⇧ Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大.它由社区最早提出和实现,ES6 将其写进了语言标准,统一了用法,原生提供 ...

  7. Ubuntu 16.04 装机后如何永久更改ulimit和修改MySQL的存储路径datadir

    Ubuntu 16.04 装机后的配置要点: 1. 网络的配置 2. 更改源列表 3. 永久更改ulimit ulimit限制着程序打开文件的数目,默认情况下为1024,作为服务器使用时,这个数字往往 ...

  8. Linux工具之ss

    1.SS命令 (Socket   Statistics),获取socket统计信息,显示和netstat类似的内容.显示更详细的TCP连接信息.   命令功能: ss(Socket Statistic ...

  9. Android 计算器制作 2.注册View 构建函数

    鄙人新手 整了 快两天 终于搞定了.. 1.首先是MainActivity 中 在Oncreate函数中 注册 2.按+ 或者 - 号 来分成两大字符串 s1 和 s2 再将s2 分为更小的s1 和 ...

  10. js常用骚操作总结

    打开网址 window.open("http://www.runoob.com"); 判断是否为url var url = $("#url").val(); i ...