numpy之数组计算
# coding=utf-8
import numpy as np
import random
#数组和数字计算,进行广播计算,包括加减乘除
t8 = t8 +2
print(t8,t8.dtype,t8.shape) #数组和数组计算,只要在某一维度(行或列)一样,就可以进行广播计算,包括加减乘除
t9 = t5+t6
print(t9,t9.dtype,t9.shape) '''
如果两个数组的后缘维度(即从末尾开始算起的维度)的轴长度相符或其中一方的维度为1,则认为他们的是广播兼容的
例如
(3,3,3)与(3,2)不可以计算,因为(3, 3,3)最后两个3,3与3,2不相符
(3,3,2)与(3,2)可以计算,因为从最后开始,存在相符维度即(3,2)
'''
t7 = np.ones((3,3))
t10 = np.random.randint(10,20,(3,3,3))
print(t10,t10.dtype,t10.shape)
t10 = t10 + t7
print(t10,t10.dtype,t10.shape)
t10 = t10 - t7
print(t10,t10.dtype,t10.shape)
t10 = t10.dot(t7)
print(t10,t10.dtype,t10.shape)
t10 = t10/t7
print(t10,t10.dtype,t10.shape) #四维数组
t10 = np.random.randint(10,20,(3,3,3,4))
print(t10,t10.dtype,t10.shape) ###########其他计算方法###################
'''
获取最大值最小值的位置
np.argmax(t,axis=0) #每一行最大值位置
np.argmin(t,axis=1) #每一列最小值的位置
创建一个全0的数组: np.zeros((3,4))
创建一个全1的数组:np.ones((3,4))
创建一个对角线为1的正方形数组(方阵):np.eye(3)
''' '''
rand(d0, d1, …, dn) 产生均匀分布的随机数 dn为第n维数据的维度
randn(d0, d1, …, dn) 产生标准正态分布随机数 dn为第n维数据的维度
randint(low[, high, size, dtype]) 产生随机整数 low:最小值;high:最大值;size:数据个数
uniform(low,high,(size)) 产生均匀分布的数组,low起始值,high结束值,size形状
normal(loc,scale,(size)) 从指定正太分布中随机抽取样本,分布中心为loc,标准差为scale,形状为size
seed(s) 随机数种子,s是给定的种子值,因为计算机生成的是伪随机数,所以通过设定相同的随机数种子,可以每次生成相同的随机数
''' '''
np.nan与np.nan不相等
np.count_nonzero(t)判断t中不为0的数量
np.count_nonzero(np.isnan(t))判断t中nan的数量
nan与任何值进行计算都为nan 求和:t.sum(axis=None)
均值:t.mean(a,axis=None) 受离群点的影响较大
中值:np.median(t,axis=None)
最大值:t.max(axis=None)
最小值:t.min(axis=None)
极值:np.ptp(t,axis=None) 即最大值和最小值只差
标准差:t.std(axis=None)
协方差: cov = np.cov(data.T) #计算协方差矩阵
计算矩阵的特征值和特征向量: eig_val, eig_vec = np.linalg.eig(data)#要求矩阵是方阵
'''
注意点:
数组中的属性axis表示,以数组的该行维度个数返回
numpy之数组计算的更多相关文章
- NumPy:数组计算
一.MumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环 ...
- Python-Numpy数组计算
一.NumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环 ...
- NumPy(数组计算)
一.介绍 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.主要功能 1)ndarray,一个多维数组结构,高效且节省空间2)无需循环对整组数据进行快速运算的数 ...
- numpy——基础数组与计算
In [1]: import numpy as np In [11]: # 创建数组 a = np.array([1,2,3,4,5]) In [12]: a Out[12]: array([1, 2 ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- Numpy.frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数
Numpy.frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 不再通过遍历,对数组中的元素进行运算,利用frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 ...
- Numpy常用金融计算(一)
In [41]: a=[1,2,3,4,5,5,6,6,7,8,8,9,9] # list类型数组 In [42]: b=nu.mean(a) #调用numpy.mean方法计算数组元素的算术平均值 ...
- NumPy 迭代数组
NumPy 迭代数组 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. 接下来我们使用 arange() ...
- 找出numpy array数组的最值及其索引
在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where ...
随机推荐
- 8.6.zookeeper应用案例_分布式共享锁的简单实现
1.分布式共享锁的简单实现 在分布式系统中如何对进程进行调度,假设在第一台机器上挂载了一个资源,然后这三个物理分布的进程都要竞争这个资源,但我们又不希望他们同时 进行访问,这时候我们就需要一个协调器, ...
- 2.LVS的三种工作模式_NAT模式
1.LVS的三种工作模式 1)VS/NAT模式(Network address translation) 2)VS/TUN模式(tunneling) 3)DR模式(Direct routing) 1. ...
- POM标签大全详解
父(Super) POM <project xmlns = "http://maven.apache.org/POM/4.0.0" xmlns:xsi = "htt ...
- Redis01——Redis产生背景
Redis 产生背景 1.1.数据存储的发展史 1.1.1.磁盘时代 很久之前,我们的数据存储方式是磁盘存储,每个磁盘都有一个磁道.每个磁道有很多扇区,一个扇区接近512Byte. 磁盘的寻址速度是毫 ...
- unittest 报告——HTMLTestRunner/BSTestRunner+代码覆盖率
1. HTMLTestRunner.py 代码(python3)如下: python2: https://github.com/tungwaiyip/HTMLTestRunner "&qu ...
- golang 系列学习(-) 数据类型
数据类型的出现 在的编程语言中,数据类型用于声明函数和变量,数据类型的出现是为了要把数据分成数据所需要内存大小的不同数据,编程时需要什么样的内存就申请什么样的内存.就可以充分的利用内存,更好的霸控程序 ...
- Struts2标签:s:password 修改时密码为空的问题
s:password 有个属性showPassword默认为false,想要密码显示,设置标签属性 showPassword="true" 即可.
- 题解 合并 union
合并 union Description 给出一个 1 ∼ N 的序列 A ( A 1 , A 2 , ..., A N ) .你每次可以将两个相邻的元素合并,合并后的元素权值即为 这两个元素的权值之 ...
- [新版] CASthesis 模板编译的问题
国科大官方学位论文latex模板 地址:https://github.com/mohuangrui/ucasthesis 它支持硕士和博士学位论文.博士后出站报告的撰写. 以下是使用记录. 一.撰写全 ...
- codevs 3022 西天收费站 x
题目描述 Description 唐僧师徒四人终于发现西天就在眼前,但猴子突然发现前面有n个收费站(如来佛太可恶),在每个收费站用不同的方式要交的钱不同,输入 ...