luogu题解 P4092 【[HEOI2016/TJOI2016]树】树链剖分
题目链接:
瞎扯--\(O(Q \log^3 N)\)解法
这道先yy出了一个\(O(Q \log^3 N)\),的做法,先树链剖分。
对于加标记操作,找到那个点所在的链,将其\(top\)标记一下,然后该点到根节点区间和+1.
对于查询操作,先看这个点所在链有没有标记,如果没有,就一直向上跳直到找到一条标记了的链,然后在那条链上根据到根节点区间和进行倍增/二分
然后出去吃饭的时候忽然想到了\(O(Q \log^2 N)\)的解法,于是刚刚这个解法刚打完还没有查错,放在这做一个参考
代码:
include
include
include
include
include
include
include
define ll long long
define ri register int
using namespace std;
const int maxn=100005;
const int inf=0x7fffffff;
template inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c'-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
x=ne?-x:x;
return ;
}
int n,q;
struct Edge{
int ne,to;
}edge[maxn<<1];
int h[maxn],num_edge=0;
inline void add_edge(int f,int t){
edge[++num_edge].ne=h[f];
edge[num_edge].to=t;
h[f]=num_edge;
return ;
}
int dep[maxn],fa[maxn],size[maxn],son[maxn],top[maxn],dfn[maxn],rnk[maxn],cnt=0;
void dfs_1(int now){
int v;size[now]=1;
for(ri i=h[now];i;i=edge[i].ne){
v=edge[i].to;
if(vfa[now])continue;
fa[v]=now,dep[v]=dep[now]+1;
dfs_1(v);
size[now]+=size[v];
if(!son[now]||size[son[now]]<size[v])son[now]=v;
}
return ;
}
void dfs_2(int now,int t){
int v;top[now]=t;
dfn[now]=++cnt,rnk[cnt]=now;
if(!son[now])return ;
dfs_2(son[now],t);
for(ri i=h[now];i;i=edge[i].ne){
v=edge[i].to;
if(vfa[now]||vson[now])continue;
dfs_2(v,v);
}
return ;
}
int sum[maxn<<2],tag[maxn<<2],L,R,dta,ok[maxn];
void build(int now,int l,int r){
if(lr){
sum[now]=ok[rnk[l]];
return ;
}
int mid=(l+r)>>1;
build(now<<1,l,mid);
build(now<<1|1,mid+1,r);
return ;
}
void pushdown(int now,int ln,int rn){
if(tag[now]){
sum[now<<1]+=tag[now]ln;
sum[now<<1|1]+=tag[now]rn;
tag[now<<1]+=tag[now];
tag[now<<1|1]+=tag[now];
tag[now]=0;
}
return ;
}
void update(int now,int l,int r){
if(L<=l&&r<=R){
sum[now]+=dta*(r-l+1);
tag[now]+=dta;
return ;
}
int mid=(l+r)>>1;
pushdown(now,mid-l+1,r-mid);
if(L<=mid)update(now<<1,l,mid);
if(mid<R)update(now<<1|1,mid+1,r);
sum[now]=sum[now<<1]+sum[now<<1|1];
return ;
}
int query(int now,int l,int r){
if(L<=l&&r<=R){
return sum[now];
}
int mid=(l+r)>>1,ans=0;
pushdown(now,mid-l+1,r-mid);
if(L<=mid)ans+=query(now<<1,l,mid);
if(mid<R)ans+=query(now<<1|1,mid+1,r);
sum[now]=sum[now<<1]+sum[now<<1|1];
return ans;
}
void update_path(int x,int y){
dta=1;ok[top[x]]=1;//该条链上有一个标记的点
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
L=dfn[top[x]],R=dfn[x];
update(1,1,n);
}
if(dfn[x]<dfn[y])swap(x,y);
L=dfn[x],R=dfn[y];
update(1,1,n);
return ;
}
inline int solve(int x,int y){
int tmp,val,p=0,k=1,len,ans=0;
bool flag=0;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
len=dfn[x]-dfn[top[x]];
if(ok[top[x]]){
L=dfn[top[x]],R=dfn[x],
tmp=query(1,1,n);
p=0,k=1,flag=0;
while(k!=0){
L=dfn[x+p+k],R=dfn[x];
if(query(1,1,n)>tmp)flag=1,k=k>>1;
else p=p+k,k=k<<1;
while(p+k>len)k=k>>1;
}
if(flag)return ans+dfn[x+p]-dfn[x];
}
ans+=len;
x=fa[top[x]];
}
if(dfn[x]>dfn[y])swap(x,y);
L=dfn[x],R=dfn[y],len=dfn[y]-dfn[x];
tmp=query(1,1,n);
p=0,k=1;
//cout<<y<<endl;
if(xy)return ans;
while(k!=0){
L=dfn[x+p+k],R=dfn[x];
if(query(1,1,n)>tmp)k=k>>1;
else p=p+k,k=k<<1;
//if(y3)cout<<k<<' '<<p<<endl;
while(p+k>len)k=k>>1;
}
return ans+dfn[x+p]-dfn[x];
}
int main(){
char opt[5];
int x,y,z;
read(n),read(q);
for(ri i=1;i<n;i++){
read(x),read(y);
add_edge(x,y);
add_edge(y,x);
}
dep[1]=1,fa[1]=0;
dfs_1(1);
dfs_2(1,1);
ok[dfn[1]]=1;
build(1,1,n);
while(q--){
scanf("%s",opt);
if(opt[0]'C'){
read(x);
//cout<<x<<"-----"<<endl;
update_path(1,x);
}
else{
read(x);
//cout<<x<<"***"<<endl;
printf("%d\n",solve(x,1));
}
}
return 0;
}
- 分析---$O(Q \log^2 N)$解法
首先我想到了一个错误的解法,就是因为链是线段树上一个连续的区间,每个$[dfn[x],dfn[top[x]]]$线段树区间有个$mx$值,表示,$x$到$top[x]$路径中距离它最近标记的祖先,加标记时比较原有标记深度与新标记深度然后更新。查询的时候查询$x$到$top[x]$的区间最大之就可以了,如果没有,就一直往上跳直至找到
然而这个解法有个错误我SB地没有发现,就是你更新区间最大值时,$x$上的祖先节点也会被更新到(因为深度更小),再次感谢wjyyy和creed_两位大佬指出我的错误
正解应该是更新子树,将子树的最大值更新,查询照样,相比于我错误的代码只需改一句话
代码:
include
include
include
include
include
include
include
define ll long long
define ri register int
using namespace std;
const int maxn=100005;
const int inf=0x7fffffff;
template inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c'-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
x=ne?-x:x;
return ;
}
int n,q;
struct Edge{
int ne,to;
}edge[maxn<<1];
int h[maxn],num_edge=0;
inline void add_edge(int f,int t){
edge[++num_edge].ne=h[f];
edge[num_edge].to=t;
h[f]=num_edge;
return ;
}
int dep[maxn],fa[maxn],size[maxn],son[maxn],top[maxn],dfn[maxn],rnk[maxn],cnt=0;
void dfs_1(int now){
int v;size[now]=0;
for(ri i=h[now];i;i=edge[i].ne){
v=edge[i].to;
if(vfa[now])continue;
fa[v]=now,dep[v]=dep[now]+1;
dfs_1(v);
size[now]+=size[v];
if(!son[now]||size[son[now]]<size[v])son[now]=v;
}
return ;
}
void dfs_2(int now,int t){
int v;top[now]=t;
dfn[now]=++cnt,rnk[cnt]=now;
if(!son[now])return ;
dfs_2(son[now],t);
for(ri i=h[now];i;i=edge[i].ne){
v=edge[i].to;
if(vfa[now]||vson[now])continue;
dfs_2(v,v);
}
return ;
}
int mx[maxn<<2],L,R,dta;
void build(int now,int l,int r){
if(lr){
if(rnk[l]1)mx[now]=1;
else mx[now]=0;
return ;
}
int mid=(l+r)>>1;
build(now<<1,l,mid);
build(now<<1|1,mid+1,r);
if(dep[mx[now<<1]]>dep[mx[now<<1|1]]){
mx[now]=mx[now<<1];
}
else mx[now]=mx[now<<1|1];
return ;
}
void update(int now,int l,int r){
if(L<=l&&r<=R){
if(dep[mx[now]]<dep[dta]){
mx[now]=dta;
}
return ;
}
int mid=(l+r)>>1;
if(L<=mid)update(now<<1,l,mid);
if(mid<R)update(now<<1|1,mid+1,r);
if(dep[mx[now<<1]]>dep[mx[now<<1|1]]){
mx[now]=mx[now<<1];
}
else mx[now]=mx[now<<1|1];
return ;
}
int query(int now,int l,int r){
if(L<=l&&r<=R){
return mx[now];
}
int mid=(l+r)>>1,ans=0,tmp;
if(L<=mid){
int tmp=query(now<<1,l,mid);
if(dep[ans]<dep[tmp])ans=tmp;
}
if(mid<R){
int tmp=query(now<<1|1,mid+1,r);
if(dep[ans]<dep[tmp])ans=tmp;
}
return ans;
}
void update_path(int x){
dta=x;
//L=R=dfn[x];
L=dfn[x],R=dfn[x]+size[x];
update(1,1,n);
return ;
}
int query_path(int x){
int ans=0;
while(top[x]!=1){
L=dfn[top[x]],R=dfn[x];
ans=query(1,1,n);
if(ans!=0)return ans;
x=fa[top[x]];
}
L=dfn[1],R=dfn[x];
ans=query(1,1,n);
return ans;
}
int main(){
char opt[5];
int x,y,z;
read(n),read(q);
for(ri i=1;i<n;i++){
read(x),read(y);
add_edge(x,y);
add_edge(y,x);
}
dep[0]=-1,dep[1]=1,fa[1]=0;
dfs_1(1);
dfs_2(1,1);
build(1,1,n);
while(q--){
//cout<<q<<endl;
scanf("%s",opt);
if(opt[0]=='C'){
read(x);
update_path(x);
}
else{
read(x);
printf("%d\n",query_path(x));
}
}
return 0;
}
```
luogu题解 P4092 【[HEOI2016/TJOI2016]树】树链剖分的更多相关文章
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
- 洛谷 P4092 [HEOI2016/TJOI2016]树 || bzoj4551
https://www.lydsy.com/JudgeOnline/problem.php?id=4551 https://www.luogu.org/problemnew/show/P4092 这当 ...
- 线段树&数链剖分
傻逼线段树,傻逼数剖 线段树 定义: 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现 ...
- [洛谷P4092][HEOI2016/TJOI2016]树
题目大意:给你一棵树,有两个操作: $C\;x:$给第$x$个节点打上标记 $Q\;x:$询问第$x$个节点的祖先中最近的打过标记的点(自己也是自己的祖先) 题解:树剖,可以维护区间或,然后若一段区间 ...
- P4092 [HEOI2016/TJOI2016]树
题目描述 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作: 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记 ...
- 题解 【HEOI2016】tree树
题面 解析 其实这题可以考虑离线做法,用并查集解决. 因为仔细想,添加标记并不方便, 但如果用并查集记录下祖先, 再一一删除,就会方便很多. 先把每次操作记录下来, 同时记录下每个点被标记的次数(因为 ...
- [题解] LuoguP4091 [HEOI2016/TJOI2016]求和
传送门 首先我们来看一下怎么求\(S(m,n)\). 注意到第二类斯特林数的组合意义就是将\(m\)个不同的物品放到\(n\)个没有区别的盒子里,不允许有空盒子的方案数. 那么将\(m\)个不同的物品 ...
- 树链剖分好(du)题(liu)选做
1.luogu P4315 月下"毛景树" 题目链接 前言: 这大概是本蒟蒻A掉的题里面码量最大的一道题了.我自认为码风比较紧凑,但还是写了175行. 从下午2点多调到晚上8点.中 ...
- UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...
随机推荐
- js循环数组(总结)
js循环数组(总结) 一.总结 一句话总结: for循环:for(j = 0,len=arr.length; j < len; j++) {} foreach循环:arr.forEach((it ...
- IDEA中log4j.properties配置文件详解
配置实例 ### 配置根 ### log4j.rootLogger = debug,console ,fileAppender,dailyRollingFile,ROLLING_FILE,MAIL,D ...
- 智能指针-共享式shared_ptr
#include <iostream>#include <string>#include <vector>#include <memory> using ...
- shared pointer
#include <string>#include <fstream>#include <memory>#include <cstdio> class ...
- 阶段5 3.微服务项目【学成在线】_day05 消息中间件RabbitMQ_2.RabbitMQ研究-RabbitMQ介绍
开发中消息队列通常有如下应用场景: 1.任务异步处理. 将不需要同步处理的并且耗时长的操作由消息队列通知消息接收方进行异步处理.提高了应用程序的响应时间. 2.应用程序解耦合 MQ相当于一个中介,生产 ...
- 搭建无人值守安装服务器(CentOS)
使用PXE+DHCP+TFTP+Kickstart+FTP搭建无人值守安装服务器.一般只有频繁安装系统才会搭建无人值守安装服务器. 虚拟机环境:youxi1,CentOS7系统双网卡,一个网卡桥接模式 ...
- Flutter之Dio引入和简单的Get/Post请求
先在pubspec.yaml中引入Dio包如图所示 认识Dio库:dio是一个dart的 http请求通用库,目前也是大陆使用最广泛的库,国人开发,完全开源. flutter的插件包管理:学了引入di ...
- Xshell终端连接CentOS7.0下Docker容器中的MySql镜像后无法键入中文问题
首先在宿主机输入env 查看LANG 或者 locale 查看 LANG 发现本地使用的字符集是: zh_CN.UTF-8 然后执行 docker exec -it mysql bash 进入dock ...
- 搭建IIS CA DC Exchange TMG SQL (CA DC篇)
搭建IIS CA DC Exchange TMG SQL (CA DC篇) 步骤 1: 在“下一步(N) > (按下按钮)”(位于“添加角色向导”中)上用户左键单击 步骤 2: 在“Ac ...
- TOMCAT 安装教程 & 配置CGI & c语言exe
TOMCAT安装 参考原文网址:百度经验http://jingyan.baidu.com/article/154b4631aad2bb28ca8f4191.html 1.下载安装JDK 网址:http ...