HDU-5728-PowMod-求phi(i*n)前缀和+指数循环节


【Problem Description】

令\(k=\sum_{i=1}^m \varphi(i\cdot n)\ mod \ (10^9+7)\)。求\(k^{k^{k^{\dots}}}\ mod \ p\)。

【Solution】

因为\(n\)的所有质因子的幂次都为\(1\),所以有\(gcd(p,\frac{n}{p})=1\)。其中\(p\)为\(n\)的最小质因子

  • 假设\(i\ mod \ p\ne 0\),则有\(gcd(i\cdot \frac{n}{p},p)=1\)。因此有\(\varphi(i\cdot n)=\varphi(i\cdot \frac{n}{p}\cdot p)=\varphi(i\cdot \frac{n}{p})\cdot \varphi(p)\)。
  • 假设\(i\ mod \ p=0\),则有\(gcd(i\cdot \frac{n}{p},p)=p\)。因此有\(\varphi(i\cdot n)=\varphi(i\cdot \frac{n}{p}\cdot p)=\varphi(i\cdot \frac{n}{p})\cdot p\)。

根据以上两条性质可得,令\(f(m,n)=\sum_{i=1}^m\varphi(i\cdot n)\):

\[f(m,n)=\sum_{i\ mod\ p\ne 0}\varphi(i\cdot \frac{n}{p})\cdot \varphi(p)+\sum_{i\ mod\ p=0}\varphi(i\cdot \frac{n}{p})\cdot p
\\=\varphi(p)\sum_{i\ mod\ p\ne 0}\varphi(i\cdot \frac{n}{p})+\sum_{i\ mod \ p=0}\varphi(i\cdot \frac{n}{p})\cdot(\varphi(p)+1)
\\=\varphi(p)\cdot\Bigg(\sum_{i\ mod\ p\ne0}\varphi(i\cdot \frac{n}{p})+\sum_{i\ mod\ p=0}\varphi(i\cdot \frac{n}{p}) \Bigg)+\sum_{i\ mod \ p=0}\varphi(i\cdot \frac{n}{p})
\\=\varphi(p)\cdot\sum_{i=1}^m\varphi(i\cdot \frac{n}{p})+\sum_{i=1}^{\frac{m}{p}}\varphi(i\cdot n)
\]

所以可得:\(f(m,n)=\varphi(p)\cdot f(m,\frac{n}{p})+f(\frac{n}{p},n)\)。这是一个递推式,可用递归求得。到此我们求得了\(k\)的值。

对于\(k^{k^{k^{\dots}}}\ mod \ p\)可以用扩展欧拉定理进行欧拉降幂即可。


【Code】

/*
* @Author: Simon
* @Date: 2019-09-02 18:00:24
* @Last Modified by: Simon
* @Last Modified time: 2019-09-02 20:22:51
*/
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 10000005
typedef long long LL;
const int mod=1e9+7;
int prime[maxn],cnt=0;
LL phi[maxn],sum[maxn];
bool vis[maxn];
void Euler(){
phi[1]=1;
for(int i=2;i<maxn;i++){
if(!vis[i]){
prime[++cnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=cnt&&i*prime[j]<maxn;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<maxn;i++) sum[i]=(sum[i-1]+phi[i])%mod;
}
int dfs(int m,int n){
if(n==1) return sum[m];
if(m==0) return 0;
for(int i=2;i*i<=n;i++){ //找最小质因子
if(n%i==0){
return (phi[i]*1LL*dfs(m,n/i)%mod+dfs(m/i,n))%mod;
}
}
if(n>1) return (phi[n]*dfs(m,n/n)%mod+dfs(m/n,n))%mod; //n本身就是素数
}
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
int fpow(int a,int b,int mod){
a%=mod;int ans=1;
while(b){
if(b&1) ans=ans*1LL*a%mod;
a=a*1LL*a%mod;
b>>=1;
}
return ans;
}
int f(int k,int m){ //递归欧拉降幂
if(m==1) return 0;
int p=phi[m];
int t=f(k,p);
int g=gcd(k,m);
if(g==1) return fpow(k,t,m);
else return fpow(k,t+p,m);
}
int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);Euler();
int n,m,p;
while(cin>>n>>m>>p){
int k=dfs(m,n);
cout<<f(k,p)%p<<endl;
}
#ifndef ONLINE_JUDGE
cout<<endl;system("pause");
#endif
return 0;
}

HDU-5728-PowMod-求phi(i*n)前缀和+指数循环节的更多相关文章

  1. HDU 5728 - PowMod

    HDU 5728 - PowMod 题意:    定义: k = ∑(i=1,m) φ(i∗n) mod 1000000007 给出: n,m,p ,且 n 无平方因子 求: ans= k^(k^(k ...

  2. HDU3977 Evil teacher 求fib数列模p的最小循环节

    In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...

  3. HDU - 5728:PowMod (欧拉函数&指数循环节)

    Declare: k=∑ m i=1 φ(i∗n) mod 1000000007 k=∑i=1mφ(i∗n) mod 1000000007 n n is a square-free number. φ ...

  4. 【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】

    [关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明][指数循环节] 原文地址:http://hi.baidu.com/aekdycoin/item/e493 ...

  5. PowMod (欧拉推式子 + 指数循环节)

    最主要的步骤是用 1式子和2式子推 3式子.(难点,看了很多博客最后的时候那个式子看不懂) 当n, m互质时即gcd(n, m) == 1,存在phi(n * m) = phi(m) * phi(n) ...

  6. hdu 3307 简单的指数循环节

    #include<stdio.h>#include<string.h>#include<algorithm>#define LL __int64using name ...

  7. hdu_2837_Calculation(欧拉函数,快速幂求指数循环节)

    Assume that f(0) = 1 and 0^0=1. f(n) = (n%10)^f(n/10) for all n bigger than zero. Please calculate f ...

  8. HDU 3746 - Cyclic Nacklace & HDU 1358 - Period - [KMP求最小循环节]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3746 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  9. Hdu 1358 Period (KMP 求最小循环节)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1358 题目描述: 给出一个字符串S,输出S的前缀能表达成Ak的所有情况,每种情况输出前缀的结束位置和 ...

随机推荐

  1. JS扩展Array.prototype引发的问题及解决方法

    遇到的问题 一上班收到个bug,写的表单联动插件在ie里面会出现js源码,当时有点意外,从没出现过这问题. 问题的原由 为什么会出现一个function呢?其它调用的插件的页面为什么没有这问题? 控制 ...

  2. 【ARM-Linux开发】ctrl-xxx的对应的signal含义

    ctrl-c 发送 SIGINT 信号给前台进程组中的所有进程.常用于终止正在运行的程序.ctrl-z 发送 SIGTSTP 信号给前台进程组中的所有进程,常用于挂起一个进程.ctrl-d 不是发送信 ...

  3. Appium移动自动化测试-----(六)3.AppiumDesktop功能描述

    一般功能 这些能力跨越多个驱动因素. 能力 描述 值 automationName 使用哪个自动化引擎 Appium(默认)或Selendroid或者UiAutomator2或者Espresso对于A ...

  4. LeetCode 637. 二叉树的层平均值(Average of Levels in Binary Tree)

    637. 二叉树的层平均值 637. Average of Levels in Binary Tree LeetCode637. Average of Levels in Binary Tree 题目 ...

  5. Quartz.Net—配置化

    Schedule配置 线程数量 如果一个Schedule中有很多任务,这样默认的10个线程就不够用了. 有很多种方法配置线程的个数. 工厂构造函数 webfonfig quartzconfig 环境变 ...

  6. WUSTOJ 1335: Similar Word(Java)

    题目链接:1335: Similar Word Description It was a crummy day for Lur. He failed to pass to the CET-6 (Col ...

  7. AVR单片机教程——如何使用本教程

    这是一篇元教程(meta-tutorial)——其他教程教你怎么使用AVR单片机,本篇教程教你如何使用本系列教程. 我们的教程已经把板载LED讲完了,但是教会你的不应该只是如何使用LED.你应该已经知 ...

  8. Docker 学习笔记(一):基础命令

    仅为个人查阅使用,要学习 Docker 的话,推荐看这份文档:<Docker - 从入门到实践> P.S. 大多数的 docker container xxx/docker image x ...

  9. 设计基于HTML5的APP登录功能及安全调用接口的方式(原理篇)

    登录 保存密码 安全 加密 最近发现群内大伙对用Hbuilder做的APP怎么做登录功能以及维护登录状态非常困惑,而我前一段时间正好稍微研究了一下,所以把我知道的告诉大家,节约大家查找资料的时间. 你 ...

  10. Dockfile文件解析

    1. Dockerfile内容基础知识 每条保留字指令都必须为大写字母且后面要跟随至少一个参数 指令按照从上到下,顺序执行 #表示注释 每条指令都会创建一个新的镜像层,并对镜像进行提交 2. Dock ...