BloomFilter算法,是一种大数据排重算法。在一个数据量很大的集合里,能准确断定一个对象不在集合里;判断一个对象有可能在集合里,而且占用的空间不大。它不适合那种要求准确率很高的情况,零错误的场景。通过牺牲部分准确率达到高效利用空间的目的。
 
    场景一:假如有一个很大的表,通过字段key查询数据,操作很重;业务方请求时,传过来的key有很大一部分是不存在的;这种不存在的key请求就会浪费我们的查询资源。针对这种情况,我们可以引人BloomFilter算法,在请求key查询之前,使用BloomFilter匹配。如果不存在,就不用去查询了(正确率百分之百);如果存在,走原来的查询流程(有可能不存在的key混进去了)。
 
    场景二:假如有一个很大的表,通过字段key判断是否存在,操作很重,如果存在就做一些操作,不存在就加入表中;可容许一定的误判。对应这种情况,我们也可以引入BloomFilter算法,通过key查询表判断存在否的方式可换成BloomFilter算法。如果存在,我们执行以前的逻辑(有一定的误判,业务也允许一定的错误);如果不存在,也执行以前的逻辑。
 
     BloomFilter是由一个长度为n的bit数组S和k个hash算法组成。先使bit数组的初始值为0.
     添加值M:M经过k个hash算法计算后,得到:M1, M2 … Mk; 然后,使S[M1]=1,S[M2]=2... S[Mk]=1
     判断值Y:Y经过k个hash算法计算后,得到:Y1,Y2... Yk。 然后,判断S[Y1],S[Y2] … S[Yk] 是否都为1。如果有一个不为1,那这个Y就一定是不存在的,以前没添加过;如果都为1,那这个Y可能存在,也可能其他值添加后,影响了这次判断的结果。
 
     我们要做的是尽量降低正确判断的误判率,资料显示, 当 k = ln(2)* m/n 时(k是hash函数个数,m是bit数组的长度,n是加入值的个数),出错概率是最小的。 
 
   当然,如果我们要移除值,怎么办呢?当前的结构是没法实现的,我们可以通过在加一个等长的数据,存放每个bit位设置为1的次数,设置一次加1,取消一次减一。
         
   
    

布隆算法(BloomFilter)的更多相关文章

  1. 海量数据处理之布隆过滤器BloomFilter算法

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿 ...

  2. 白话布隆过滤器BloomFilter

    通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...

  3. 布隆过滤器(BloomFilter)持久化

    摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...

  4. HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍

    布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大 ...

  5. 【浅析】|白话布隆过滤器BloomFilter

    通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...

  6. Spark布隆过滤器(bloomFilter)

    数据过滤在很多场景都会应用到,特别是在大数据环境下.在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的.很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性 ...

  7. Hbase 布隆过滤器BloomFilter介绍

    转载自:http://blog.csdn.net/opensure/article/details/46453681 1.主要功能 提高随机读的性能 2.存储开销 bloom filter的数据存在S ...

  8. SpringBoot(18)---通过Lua脚本批量插入数据到Redis布隆过滤器

    通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三 ...

  9. 程序员的算法课(14)-Hash算法-对海量url判重

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

随机推荐

  1. docker清理

    # 删除退出的容器docker rm $(docker ps -qa --no-trunc --filter "status=exited") # 删除悬挂镜像docker rmi ...

  2. day36 joinablequeue、多线程理论、多线程的两种使用方式、守护线程、互斥锁、死锁、递归锁、信号量

    1.joinablequeue队列 joinablequeue与queue一样,也是一种队列,其继承自queue,也有queue中的put 与get 方法,但是在joinablequeue中有自己的 ...

  3. 阅读《C Primer Plus》收获

    190927 知识内容: 1.了解到C语言混乱代码大赛.评选谁的程序最有创意但又让人难以理解 2.了解最初的c语言的规则,所有编译器依照规则而设计. 3.编程前先要确定好目标对象,并且在纸上大概写出流 ...

  4. 23.安装php和echarts进行结合展示图表

    数据展示 http://echarts.baidu.com/index.html 是一个图像展示 可以到官方实例中选择各种图 通过下载例子 新建echartdome.php <!DOCTYPE ...

  5. 17.Azkaban实战

    首先创建一个command.job文件 #command.job type=command command=echo it18zhang 然后打成zip压缩包 上传刚刚打包的zip包 上传完后可以执行 ...

  6. Linux 下使用 rar 进行压缩和解压缩

    1. 下载安装文件 https://www.rarlab.com/download.htm 注意下载  64位的 2. 2019.8 时的下载命令为: wget https://www.rarlab. ...

  7. Kafka如何实现每秒上百万的高并发写入

    Kafka是高吞吐低延迟的高并发.高性能的消息中间件,在大数据领域有极为广泛的运用.配置良好的Kafka集群甚至可以做到每秒几十万.上百万的超高并发写入. 那么Kafka到底是如何做到这么高的吞吐量和 ...

  8. Synchronized与Lock的区别与应用场景

    转载. https://blog.csdn.net/fly910905/article/details/79765381 同步代码块,同步方法,或者是用java提供的锁机制,我们可以实现对共享资源变量 ...

  9. kubectl相关指令

    在列出.描述.修改或删除其他命名空间中的对象时,需要给kubect1命令传递--namespace(或-n)选项.如果不指定命名空间,kubect1将在当前上下文中配置的默认命名空间中执行操作.而当前 ...

  10. SpringBoot起飞系列-配置嵌入式Servlet容器(八)

    一.前言 springboot中默认使用的是tomcat容器,也叫做嵌入式的servlet容器.因为它和我们平常使用的tomcat容器不一样,这个tomcat直接嵌入到的springboot,平常我们 ...