BloomFilter算法,是一种大数据排重算法。在一个数据量很大的集合里,能准确断定一个对象不在集合里;判断一个对象有可能在集合里,而且占用的空间不大。它不适合那种要求准确率很高的情况,零错误的场景。通过牺牲部分准确率达到高效利用空间的目的。
 
    场景一:假如有一个很大的表,通过字段key查询数据,操作很重;业务方请求时,传过来的key有很大一部分是不存在的;这种不存在的key请求就会浪费我们的查询资源。针对这种情况,我们可以引人BloomFilter算法,在请求key查询之前,使用BloomFilter匹配。如果不存在,就不用去查询了(正确率百分之百);如果存在,走原来的查询流程(有可能不存在的key混进去了)。
 
    场景二:假如有一个很大的表,通过字段key判断是否存在,操作很重,如果存在就做一些操作,不存在就加入表中;可容许一定的误判。对应这种情况,我们也可以引入BloomFilter算法,通过key查询表判断存在否的方式可换成BloomFilter算法。如果存在,我们执行以前的逻辑(有一定的误判,业务也允许一定的错误);如果不存在,也执行以前的逻辑。
 
     BloomFilter是由一个长度为n的bit数组S和k个hash算法组成。先使bit数组的初始值为0.
     添加值M:M经过k个hash算法计算后,得到:M1, M2 … Mk; 然后,使S[M1]=1,S[M2]=2... S[Mk]=1
     判断值Y:Y经过k个hash算法计算后,得到:Y1,Y2... Yk。 然后,判断S[Y1],S[Y2] … S[Yk] 是否都为1。如果有一个不为1,那这个Y就一定是不存在的,以前没添加过;如果都为1,那这个Y可能存在,也可能其他值添加后,影响了这次判断的结果。
 
     我们要做的是尽量降低正确判断的误判率,资料显示, 当 k = ln(2)* m/n 时(k是hash函数个数,m是bit数组的长度,n是加入值的个数),出错概率是最小的。 
 
   当然,如果我们要移除值,怎么办呢?当前的结构是没法实现的,我们可以通过在加一个等长的数据,存放每个bit位设置为1的次数,设置一次加1,取消一次减一。
         
   
    

布隆算法(BloomFilter)的更多相关文章

  1. 海量数据处理之布隆过滤器BloomFilter算法

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿 ...

  2. 白话布隆过滤器BloomFilter

    通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...

  3. 布隆过滤器(BloomFilter)持久化

    摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...

  4. HBase之八--(3):Hbase 布隆过滤器BloomFilter介绍

    布隆过滤器( Bloom filters) 数据块索引提供了一个有效的方法,在访问一个特定的行时用来查找应该读取的HFile的数据块.但是它的效用是有限的.HFile数据块的默认大小是64KB,这个大 ...

  5. 【浅析】|白话布隆过滤器BloomFilter

    通过本文将了解到以下内容: 查找问题的一般思路 布隆过滤器的基本原理 布隆过滤器的典型应用 布隆过滤器的工程实现 场景说明: 本文阐述的场景均为普通单机服务器.并非分布式大数据平台,因为在大数据平台下 ...

  6. Spark布隆过滤器(bloomFilter)

    数据过滤在很多场景都会应用到,特别是在大数据环境下.在数据量很大的场景实现过滤或者全局去重,需要存储的数据量和计算代价是非常庞大的.很多小伙伴第一念头肯定会想到布隆过滤器,有一定的精度损失,但是存储性 ...

  7. Hbase 布隆过滤器BloomFilter介绍

    转载自:http://blog.csdn.net/opensure/article/details/46453681 1.主要功能 提高随机读的性能 2.存储开销 bloom filter的数据存在S ...

  8. SpringBoot(18)---通过Lua脚本批量插入数据到Redis布隆过滤器

    通过Lua脚本批量插入数据到布隆过滤器 有关布隆过滤器的原理之前写过一篇博客: 算法(3)---布隆过滤器原理 在实际开发过程中经常会做的一步操作,就是判断当前的key是否存在. 那这篇博客主要分为三 ...

  9. 程序员的算法课(14)-Hash算法-对海量url判重

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

随机推荐

  1. 《JAVA语言》第三节课

    使用递归方式判断某个字串是否是回文( palindrome ). 1. 设计思想 在判断字符串是否是回文的时,采用递归法,首先要分析出重复做的是什么事情,这里是要重复判断两端的字符是不是相等的,直到剩 ...

  2. java api操作

    java api操作 导入开发包 将hbase安装包中lib下包导入java项目   创建表   Configuration conf = HBaseConfiguration.create(); c ...

  3. Linux文件权限基础回顾介绍

    文件的权限 文件权限的概述: 权限贯穿运维的一生

  4. Python之数据库

    Python之数据库: 1. Mysql 2. pymysql 3. SQLAlchemy Mysql 一.概述 什么是数据库 ? 答:数据的仓库,如:在ATM的示例中我们创建了一个 db 目录,称其 ...

  5. ARC100E. Or Plus Max

    题目 好题.没想出解法. 官方题解: 这个解法和 Small Multiple 那道题的解法有异曲同工之妙. 扩展 若把 $\mathsf{or}$ 改成 $\mathsf{and}$ 或者 $\ma ...

  6. position: sticky 防坑指南

    position: sticky 防坑指南:https://www.jianshu.com/p/e217905e8b87 今天在写小程序项目的时候碰到一个需求是要把轮播图下面的标签栏滑动到顶部后固定, ...

  7. Spring4学习回顾之路02—IOC&DI

    IOC&DI介绍 ●IOC:(Inversion of Control) :控制反转(反向获取资源) 其思想是反转资源获取的方向.传统的资源上查找方式要求组件向容器发起请求查找资源,作为回应, ...

  8. Python链表操作(实现)

    Python链表操作 在Python开发的面试中,我们经常会遇到关于链表操作的问题.链表作为一个非常经典的无序列表结构,也是一个开发工程师必须掌握的数据结构之一.在本文中,我将针对链表本身的数据结构特 ...

  9. LeetCode 141 ——环形链表(JAVA)

    给定一个链表,判断链表中是否有环. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 -1,则在该链表中没有环. 示例 1: 输入: ...

  10. Elastic Search中filter的理解

    在ES中,请求一旦发起,ES服务器是按照请求参数的顺序依次执行具体的搜索过滤逻辑的.如何定制请求体中的搜索过滤条件顺序,是一个经验活.类似query(指search中的query请求参数),也是搜索的 ...