LOJ#3031. 「JOISC 2019 Day1」聚会

听说随机可过?

我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链,询问链的两个端点和u的虚树,如果u在链上那么二分找出u的位置,如果u不在链上且和链相连的点不在链上,那么建出那个点然后连上u,否则删除整条链,保留与u相连的那个点,继续这个操作

二分的代价应该最多是11,每次差不多删掉两个儿子是18/2 = 9

然而这个上限肯定跑不到,最后实测操作次数最多的数据点是21000+,有几个点19000,更多的在10000左右

还有一个2000的点跑了1998不知道发生了什么

#include "meetings.h"
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 2005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
set<int> to[2005];
bool vis[2005],finish[2005];
int dep[2005],S,T,fa[2005];
vector<int> v,line;
void getpos(int u,int fa) {
v.pb(u);
for(auto v : to[u]) {
if(vis[v]) continue;
if(v != fa) getpos(v,u);
}
}
void dfs(int u) {
for(auto v : to[u]) {
if(v != fa[u]) {
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
}
}
}
void getpara(int p) {
v.clear();
getpos(p,-1);
dep[p] = 0;fa[p] = -1;
dfs(p);
S = p;
for(auto t : v) {
if(dep[t] > dep[S]) S = t;
}
dep[S] = 0;fa[S] = -1;
dfs(S);
T = p;
for(auto t : v) {
if(dep[t] > dep[T]) T = t;
}
}
void pass_line(int a,int b) {
dep[a] = 0;fa[a] = -1;
dfs(a);
int p = b;
while(1) {
vis[p] = 1;
if(p == a) break;
p = fa[p];
}
}
void getline(int a,int b) {
line.clear();
dep[a] = 0;fa[a] = -1;
dfs(a);
int p = b;
while(1) {
line.pb(p);
if(p == a) break;
p = fa[p];
}
}
void build(int u) {
memset(vis,0,sizeof(vis));
finish[u] = 1;
int p = 0;
while(1) {
getpara(p);
if(S == T) {
to[S].insert(u);to[u].insert(S);break;
}
int m = Query(u,S,T);
getline(S,T);
bool f = 0;
for(auto v : line) {
if(v == m) {f = 1;break;}
}
if(!f && m != u) {
build(m);to[m].insert(u);to[u].insert(m);break;
}
if(m == S) {to[u].insert(S);to[S].insert(u);break;}
if(m == T) {to[u].insert(T);to[T].insert(u);break;}
if(m == u) { int l = 1,r = line.size() - 1;
while(l < r) {
int mid = (l + r) >> 1;
if(Query(u,line[mid],line[0]) == u) r = mid;
else l = mid + 1;
}
int a = line[r],b = line[r - 1];
to[b].erase(a);to[a].erase(b);
to[b].insert(u);to[a].insert(u);
to[u].insert(a);to[u].insert(b);
break;
}
p = m;pass_line(S,T);vis[p] = 0;
}
}
void Solve(int N) {
to[0].insert(1);to[1].insert(0);
for(int i = 2 ; i < N ; ++i) {
if(!finish[i]) build(i);
}
for(int i = 0 ; i < N ; ++i) {
for(auto v : to[i]) {
if(v > i) Bridge(i,v);
}
}
}

【LOJ】#3031. 「JOISC 2019 Day1」聚会的更多相关文章

  1. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  2. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

  3. @loj - 3039@ 「JOISC 2019 Day4」蛋糕拼接 3

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 今天是 IOI 酱的生日,所以她的哥哥 JOI 君给她预定了一个 ...

  4. 【LOJ】#3036. 「JOISC 2019 Day3」指定城市

    LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...

  5. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  6. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  7. 「JOISC 2019 Day3」穿越时空 Bitaro

    「JOISC 2019 Day3」穿越时空 Bitaro 题解: ​ 不会处理时间流逝,我去看了一眼题解的图,最重要的转换就是把(X,Y)改成(X,Y-X)这样就不会斜着走了. ​ 问题变成二维平面上 ...

  8. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  9. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

随机推荐

  1. locate/find

    locate 从数据库 (/var/lib/mlocate/mlocate.db) 查找命令,使用updatedb更新库. 类似于数据库的索引建立,在首次简历索引的时候,很耗费资源,在建立完成后,查询 ...

  2. [Luogu] 次小生成树

    https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成 ...

  3. 【线性代数】3-1:向量空间(Space of Vectors)

    title: [线性代数]3-1:向量空间(Space of Vectors) categories: Mathematic Linear Algebra keywords: Vectors Spac ...

  4. Python 通过文件名批量移动文件

    Python 通过文件名批量移动文件 https://stackoverflow.com/questions/28913088/moving-files-with-wildcards-in-pytho ...

  5. 丰桥运单打印windows/linux环境安装(原)

    Linux ①linux下安装jdk1.8,执行命令:yum -y install java ②创建文件夹sf-service将csim_waybill_print_service_V1.0.3.ja ...

  6. ARTS打卡计划第十五周

    Algorithms: https://leetcode-cn.com/problems/single-number/submissions/ Review: “What Makes a Good D ...

  7. node.js获取ip及mac

    ; (function (win) { var os = require('os'); var ifaces = os.networkInterfaces(); function NetworkUti ...

  8. Python实现Dijkstra算法

    # Dijkstra.狄杰斯特拉 import heapq import math def init_distance(graph, s): distance = {s: 0} for vertex ...

  9. Leetcode题目238.除自身以外数组的乘积(中等)

    题目描述: 给定长度为 n 的整数数组 nums,其中 n > 1,返回输出数组 output ,其中 output[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积. 示例: ...

  10. PHP环境搭建之单独安装

    还在使用PHP集成环境吗?教你自定义搭建配置PHP开发环境,按照需求进行安装,安装的版本可以自己选择,灵活性更大. 目录:1. 安装Apache2. 安装PHP3. 安装MySQL4. 安装Compo ...