/*
分奇偶为二部图,s与奇建图,t与偶建图,权值为当前数的值,如果遇到必取的权值置为inf。
奇偶建边为相邻的权值为2*(x&y);所有数的值-最小点全覆盖。
置为inf意为不能割掉。奇偶边权意为可以割掉相邻的。
*/
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define inf 0x3fffffff
#define N 2600
#define ii 60
struct node {
int u,v,w,next;
}bian[N*4*2];
int head[N],yong,s,t,dis[N],ma[ii][ii],id[ii][ii],f[ii][ii];;
void init(){
yong=0;
memset(head,-1,sizeof(head));
memset(dis,-1,sizeof(dis));
}
void addedge(int u,int v,int w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(int u,int v,int w) {
addedge(u,v,w);
addedge(v,u,0);
}
void bfs() {
int u,v,i;
queue<int>q;
q.push(t);
dis[t]=0;
while(!q.empty()) {
u=q.front();
q.pop();
for(i=head[u];i!=-1;i=bian[i].next) {
v=bian[i].v;
if(dis[v]==-1) {
dis[v]=dis[u]+1;
q.push(v);
}
}
}
return ;
}
int ISAP() {
int sum=0;
bfs();
int gap[N],cur[N],stac[N],top,i;
memset(gap,0,sizeof(gap));
for(i=s;i<=t;i++) {
gap[dis[i]]++;
cur[i]=head[i];
}
int k=s;
top=0;
while(dis[s]<t+1) {
if(k==t) {
int minn=inf,index;
for(i=0;i<top;i++) {
int e=stac[i];
if(minn>bian[e].w) {
minn=bian[e].w;
index=i;
}
}
for(i=0;i<top;i++) {
int e=stac[i];
bian[e].w-=minn;
bian[e^1].w+=minn;
}
sum+=minn;
top=index;
k=bian[stac[top]].u;
}
for(i=cur[k];i!=-1;i=bian[i].next) {
int v=bian[i].v;
if(bian[i].w&&dis[k]==dis[v]+1) {
cur[k]=i;
k=v;
stac[top++]=i;
break;
}
}
if(i==-1) {
int m=t+1;
for(i=head[k];i!=-1;i=bian[i].next)
if(m>dis[bian[i].v]&&bian[i].w) {
m=dis[bian[i].v];
cur[k]=i;
}
if(--gap[dis[k]]==0)break;
gap[dis[k]=m+1]++;
if(k!=s)
k=bian[stac[--top]].u;
}
}
return sum;
}
int main() {
int n,m,i,j,k,sum,cnt;
while(scanf("%d%d%d",&n,&m,&k)!=EOF) {
init();
sum=0;
cnt=1;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++) {
scanf("%d",&ma[i][j]);
sum+=ma[i][j];
id[i][j]=cnt++;
}
memset(f,0,sizeof(f));
while(k--) {
scanf("%d%d",&i,&j);
f[i][j]=1;
}
s=0;
t=n*m+1;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++) {
if((i+j)&1) {
if(f[i][j])
add(s,id[i][j],inf);
else
add(s,id[i][j],ma[i][j]);
if(i>=2)
add(id[i][j],id[i-1][j],2*(ma[i][j]&ma[i-1][j]));
if(j>=2)
add(id[i][j],id[i][j-1],2*(ma[i][j]&ma[i][j-1]));
if(i<=n-1)
add(id[i][j],id[i+1][j],2*(ma[i][j]&ma[i+1][j]));
if(j<=m-1)
add(id[i][j],id[i][j+1],2*(ma[i][j]&ma[i][j+1]));
}
else {
if(f[i][j])add(id[i][j],t,inf);
else add(id[i][j],t,ma[i][j]);
}
}
printf("%d\n",sum-ISAP());
}
return 0;
}

hdu 3657最大点权独立集变形(方格取数变形)的更多相关文章

  1. hdu 3657 最大点权独立集变形(方格取数的变形最小割,对于最小割建图很好的题)

    转载:http://blog.csdn.net/cold__v__moon/article/details/7924269 /* 这道题和方格取数2相似,是在方格取数2的基础上的变形. 方格取数2解法 ...

  2. hdu 4859 最大点权独立集的变形(方格取数的变形)

    /*刚开始不会写,最大点权独立集神马都不知道,在潘神的指导下终于做出来,灰常感谢ps: 和方格取数差不多奇偶建图,对于D必割点权为0,对于.必然不割点权为inf.然后和方格取数差不多的建图 .--.| ...

  3. HDU 1565 最大点权独立集

    首先要明白图论的几个定义: 点覆盖.最小点覆盖: 点覆盖集即一个点集,使得所有边至少有一个端点在集合里.或者说是“点” 覆盖了所有“边”.. 最小点覆盖(minimum vertex covering ...

  4. hdu 1565&&hdu 1569 (最大点权独立集)

    题目意思很明确就是选一些没有相连的数字,使和最大,建成二分图后求最大点权独立集,, #include<stdio.h> #include<string.h> const int ...

  5. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  6. hdu1569 方格取数 求最大点权独立集

    题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和.思路:建图,相邻的点有一条边,则建立了一个二分图,求最大点权独立集(所取点两两无公共边,权值和最大),问题转化为求总权和-最小点权覆盖集(点 ...

  7. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  8. HDU 1565 1569 方格取数(最大点权独立集)

    HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...

  9. HDU 1565 方格取数(1)(最大点权独立集)

    http://acm.hdu.edu.cn/showproblem.php?pid=1565 题意: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格 ...

随机推荐

  1. [luogu_U15116]珈百璃堕落的开始

    https://www.zybuluo.com/ysner/note/1239458 题面 给定\(n\)个二元组\((x,y)\),问有多少种方案,使得选出其中几个后,\(\sum x=\sum y ...

  2. bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...

  3. JSP-Runoob:JSP 文件上传

    ylbtech-JSP-Runoob:JSP 文件上传 1.返回顶部 1. JSP 文件上传 JSP 可以与 HTML form 标签一起使用,来允许用户上传文件到服务器.上传的文件可以是文本文件或图 ...

  4. bzoj1106

    模拟+树状数组 先开始以为是先删距离最小的,这样可以减小上下的距离,然后觉得很难写,看码长很短,就看了题解,结果很奥妙 我们只考虑两种元素,就是如果像-a-b-a-b-这样的肯定得交换,如果像-a-b ...

  5. jquery插件开发基本步骤

    一.介绍 插件编写的目的是给已经有的一系列方法或函数做一个封装,以便在其他地方重复使用,方便后期维护. JQuery除了提供一个简单.有效的方式进行管理元素以及脚本,它还还提供了例外一种机制:即给核心 ...

  6. [Swift通天遁地]八、媒体与动画-(10)在项目中播放GIF动画

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  7. 322 Coin Change 零钱兑换

    给定不同面额的硬币(coins)和一个总金额(amount).写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合方式能组成总金额,返回-1.示例 1:coins = [1, ...

  8. 【转】Linux下使用locale命令设置语言环境

    转自:http://www.cnblogs.com/dolphi/p/3622570.html locale命令设置语言环境 在Linux中通过locale来设置程序运行的不同语言环境,locale由 ...

  9. UE4 集成讯飞听写插件

    搞了几天,有些坑记录一下. 3个方面的知识需要学习 1.制作UE4插件 2.引入第三方库 3.讯飞听写的api 一看是参考 https://blog.csdn.net/u012793104/artic ...

  10. crontab的使用

    基本格式 : * * * * * command 分 时 日 月 周 命令 第1列表示分钟1-59 每分钟用*或者 */1表示 第2列表示小时1-23(0表示0点) 第3列表示日期1-31 第4列表示 ...