建图:源点—>边的起点(集合1中的)—>边的终点(集合2中的)—>汇点,所有边权均为1,

计算最大流,最后枚举起点的出边,边权为0的即为匹配上的,

可以这样理解:每条边表示起点和终点形成一组可选匹配,所以每个点只能被匹配1次(做起点和终点分别1次),所以可以看成是二分图匹配。

代码略丑:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <queue> using namespace std; template<const int _n>
struct Edge
{
struct Edge_base { int to,next,w; }e[_n];
int cnt,p[_n];
Edge() { clear(); }
int start(const int x) { return p[x]; }
void insert(const int x,const int y,const int z)
{ e[++cnt].to=y; e[cnt].next=p[x]; e[cnt].w=z; p[x]=cnt; return ; }
Edge_base& operator[](const int x) { return e[x]; }
void clear() { cnt=,memset(p,,sizeof(p)); }
}; int n,m,SSS,TTT,Ans;
int level[],cur[],Out[],to[],from[];
bool visited[];
Edge<> e; bool Bfs(const int S)
{
int i,t;
queue<int> Q;
memset(level,,sizeof(level));
level[S]=;
Q.push(S);
while(!Q.empty())
{
t=Q.front();Q.pop();
for(i=e.start(t);i;i=e[i].next)
{
if(!level[e[i].to] && e[i].w)
{
level[e[i].to]=level[t]+;
Q.push(e[i].to);
}
}
}
return level[TTT];
} int Dfs(const int S,const int bk)
{
if(S==TTT)return bk;
int rest=bk;
for(int &i=cur[S];i;i=e[i].next)
{
if(level[e[i].to]==level[S]+ && e[i].w)
{
int flow=Dfs(e[i].to,min(e[i].w,rest));
e[i].w-=flow;
e[i^].w+=flow;
if((rest-=flow)<=)break;
}
}
if(bk==rest)level[S]=;
return bk-rest;
} int Dinic()
{
int flow=;
while(Bfs(SSS))
{
memcpy(cur,e.p,sizeof(int)*(n+n+));
flow+=Dfs(SSS,0x3f3f3f3f);
}
return flow;
} int main()
{
freopen("path3.in","r",stdin);
freopen("path3.out","w",stdout);
int i,j,x,y; scanf("%d%d",&n,&m);
for(i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
e.insert(x,y+n,);
e.insert(y+n,x,);
Out[x]++;
} SSS=n+n+,TTT=n+n+;
for(i=;i<=n;++i)
{
e.insert(SSS,i,);
e.insert(i,SSS,);
e.insert(i+n,TTT,);
e.insert(TTT,i+n,);
} Dinic(); for(i=e.start(SSS);i;i=e[i].next)
{
if(e[i].w)continue;
for(j=e.start(e[i].to);j;j=e[j].next)
{
if(e[j].to!=SSS && !e[j].w)
{
to[e[i].to]=e[j].to-n;
from[e[j].to-n]=e[i].to;
break;
}
}
} for(i=;i<=n;++i)
{
if(!from[i])
{
int t=i;
while(t)
{
printf("%d ",t);
t=to[t];
}
printf("\n");
Ans++;
}
} printf("%d\n",Ans); return ;
}

匈牙利写法详见:http://www.cnblogs.com/Ngshily/p/4988909.html

[Cogs728] [网络流24题#3] 最小路径覆盖 [网络流,最大流,二分图匹配]的更多相关文章

  1. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  2. LibreOJ #6002. 「网络流 24 题」最小路径覆盖

    #6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  3. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  4. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  5. 【PowerOJ1738&网络流24题】最小路径覆盖问题 (最大流)

    题意: 思路: [问题分析] 有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决. [建模方法] 构造二分图,把原图每个顶点i拆分成二分图X,Y集合中的两个顶点Xi和Yi.对于原图 ...

  6. 【刷题】LOJ 6002 「网络流 24 题」最小路径覆盖

    题目描述 给定有向图 \(G = (V, E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 \(P\) 的一条路上,则称 \(P\) 是 ...

  7. Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流)

    Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流) Description G 公司有n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使n ...

  8. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

  9. Libre 6003 「网络流 24 题」魔术球 (网络流,最大流)

    Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只 ...

随机推荐

  1. UVALive 4671 K-neighbor substrings 巧用FFT

    UVALive4671   K-neighbor substrings   给定一个两个字符串A和B B为模式串.问A中有多少不同子串与B的距离小于k 所谓距离就是不同位的个数. 由于字符串只包含a和 ...

  2. TS流解析 四

    一 从TS流开始 数字电视机顶盒接收到的是一段段的码流,我们称之为TS(Transport Stream,传输流),每个TS流都携带一些信息,如Video.Audio以及我们需要学习的PAT.PMT等 ...

  3. 49.Ext.form.TextField()基本用法

    转自:https://blog.csdn.net/toudoulin/article/details/6719163 var textfieldName = new Ext.form.TextFiel ...

  4. codeforces——模拟

    805 B. 3-palindrome    http://codeforces.com/problemset/problem/805/B /* 题意字符串中不能有长度为三的回文串,且c数量最少 */ ...

  5. redis-缓存穿透,缓存雪崩,缓存击穿,并发竞争

    目录 缓存穿透 定义 解决方案 利用互斥锁 采用异步更新策略 使用布隆过滤器 空置缓存 缓存雪崩 定义 解决方案 给缓存的加一个随机失效时间 使用互斥锁 双缓存策略 缓存击穿 定义 解决方案 使用互斥 ...

  6. QT 制作串口调试小助手----(小白篇)

    一.成品图展示 简介:因zigbee实验,制作一个相对简易版的上位机,接收来自zigbee无线传感采集的温湿度.光照等数据. 并且将数据部分描绘成实时动态折线统计图. 二.主要功能介绍 主要使用QT自 ...

  7. Mac OS安装octave出现的问题-'error:terminal type set to 'unknown'的解决'

    学习Machine learning需要使用Octave语言,毕竟Andrew Ng (恩达.吴)力荐.本机系统Mac OS X EI Capitan, 其实什么系统都无所谓了,安装原理都是一样的. ...

  8. 快速搭建Hadoop及HBase分布式环境

    本文旨在快速搭建一套Hadoop及HBase的分布式环境,自己测试玩玩的话ok,如果真的要搭一套集群建议还是参考下ambari吧,目前正在摸索该项目中.下面先来看看怎么快速搭建一套分布式环境. 准备 ...

  9. 自学Python十二 战斗吧Scrapy!

    初窥Scrapy Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 还是先推荐几个学习的教程:Scrapy 0.2 ...

  10. Go 时间相关

    >获取当前时间: t := time.Now() >获取当天开始.结束时间: tm1 := time.Date(t.Year(), t.Month(), t.Day(), 0, 0, 0, ...