坐标平面上的三点,A(x1,y1),B(x1,y2),C(x2,y1),假设有概率分布 p(x,y)(P(X=x,Y=y) 联合概率),则根据联合概率与条件概率的关系,则有如下两个等式:

{p(x1,y1)p(y2|x1)=p(x1)p(y1|x1)p(y2|x1)p(x1,y2)p(y1|x1)=p(x1)p(y2|x1)p(y1|x1)

因此有:

p(x1,y1)⋅p(y2|x1)=p(x1,y2)⋅p(y1|x1)

对于此坐标平面上的三点而言,即为:p(A)⋅p(y2|x1)=p(B)⋅p(y1|x1),其本质意义在于 x=x1 这条平行于 y 轴(垂直于 x 轴)的直线上,如果使用条件分布 p(⋅|x1) 作为任意两点间的转移概率,则两点间的转移满足细致平稳条件(p(i)q(i,j)=p(j)q(j,i)等式左边是 A 转移到 B,等式右边则是 B 转移到 A)。

同理:

p(A)p(x2|y1)=p(C)p(x1|y1)

更多关于 Gibbs 采样的知识请见:深度学习基础(七)—— Gibbs 采样

Gibbs 采样定理的若干证明的更多相关文章

  1. 如何做Gibbs采样(how to do gibbs-sampling)

    原文地址:<如何做Gibbs采样(how to do gibbs-sampling)> 随机模拟 随机模拟(或者统计模拟)方法最早有数学家乌拉姆提出,又称做蒙特卡洛方法.蒙特卡洛是一个著名 ...

  2. 关于LDA的gibbs采样,为什么可以获得正确的样本?

    算法里面是随机初始了一个分布,然后进行采样,然后根据每次采样的结果去更新分布,之后接着采样直到收敛. 1.首先明确一下MCMC方法. 当我们面对一个未知或者复杂的分布时,我们经常使用MCMC方法来进行 ...

  3. 奈奎斯特采样定理(Nyquist)

    采样定理在1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理. 1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理. 1 ...

  4. 【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】

    [关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明][指数循环节] 原文地址:http://hi.baidu.com/aekdycoin/item/e493 ...

  5. MC, MCMC, Gibbs采样 原理&实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...

  6. MCMC(四)Gibbs采样

    MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(三)MCMC采样和M-H采样中,我们讲到了M-H采样已经可以很好 ...

  7. 文本主题模型之LDA(二) LDA求解之Gibbs采样算法

    文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇, ...

  8. Gibbs采样

    (学习这部分内容大约需要50分钟) 摘要 Gibbs采样是一种马尔科夫连蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法, 其中每个随机变量从给定剩余变量的条件分布迭代地重 ...

  9. DSP5509之采样定理

    1. 在实际种信号是模拟连续的,但是AD采样确实离散的数字的,根据采样定理,采样频率要是模拟信号的频率2倍以上采样到的值才没问题. 2. 打开工程 unsigned ]; main() { int i ...

随机推荐

  1. BZOJ4864: [BeiJing 2017 Wc]神秘物质(Splay)

    Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子.这 一天, 小诚刚从研究所得到了一块奇异的陨石样本, 便 ...

  2. bzoj3786星系探索(splay维护dfs序)

    Description 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其余的所有星球均有且仅有一个依赖星球.主星球 ...

  3. 事件循环(Event Loop)

    1.什么是事件循环? JavaScript为单线程执行的,所以是从上到下依次执行,js分为两个任务,宏任务和微任务 首先执行宏任务(第一次就是执行所有的同步代码),再执行所有的微任务,执行完毕之后再次 ...

  4. snmp agent 表格实现(子代理方式实现)

    前奏參见例如以下: http://blog.sina.com.cn/s/blog_8f3de3250100xhao.html http://blog.csdn.net/hepeng597/articl ...

  5. angular设置全局变量,可修改监听变量

    创建service.module.ts import { NgModule, ModuleWithProviders } from '@angular/core'; import { SomeShar ...

  6. Photon + Unity3D 线上游戏开发 学习笔记(三)

    好的,说了两篇了 如今我们正式的入手,揭开photon 的盖头哈  建立photon项目 第一步:   在Visual studio建立一个空的 待会为了測试也会在里面建立一个client 项目 (只 ...

  7. 2.Docker初体验【Docker每天5分钟】

    原文:2.Docker初体验[Docker每天5分钟] Docker给PaaS世界带来的“降维打击”,其实是提供了一种非常便利的打包机制.该机制打包了应用运行所需要的整个操作系统,从而保证了本地环境和 ...

  8. 20160206.CCPP体系具体解释(0016天)

    代码片段(01):.指针.c+02.间接赋值.c 内容概要:内存 ///01.指针 #include <stdio.h> #include <stdlib.h> //01.取地 ...

  9. spring接收对象数组实例

    JS var param= new Array(); var one= new Object; one.id = '1'; one.name= 'simba1'; param.push(one); v ...

  10. python打印即时输出的方法

    >>> import sys>>> sys.stdout.flush() 但是实验了,上面的报错,应该是不对的. 实验了,下面的报错,应该是不对的. 使用 prin ...