代码如下,测试发现,是否对输入数据进行归一化/标准化对于结果没有影响:

import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler def parse_line(s):
s = s.replace("u'", "").replace("'", "").replace("(", "").replace(")", "").replace("[", "").replace("]", "")
s2 = s.split(",")
dat = [float(_) for _ in s2[1:]]
return (s2[0], dat) def get_data():
with open("feature.dat") as f:
lines = f.readlines()
return [parse_line(line) for line in lines] def train(collected_data):
input_data = [c[1] for c in collected_data]
#scaler = StandardScaler().fit(input_data)
#input_data = scaler.transform(input_data) #min_max_scaler = MinMaxScaler()
#input_data = min_max_scaler.fit_transform(input_data)
#print input_data rng = np.random.RandomState(42)
#clf = IsolationForest(max_samples=10*2, random_state=rng)
#clf = IsolationForest(max_features=5)
clf = IsolationForest(max_samples="auto", random_state=rng)
clf.fit(input_data)
pred_y = clf.predict(input_data) bad_domains = set()
for i,y in enumerate(pred_y):
if y == -1:
print "bad domains:", collected_data[i]
bad_domains.add(collected_data[i][0]) if __name__ == "__main__":
dat = get_data()
train(dat)

输出样例:

bad domains: ('openvpn.', [81.0, 5.0, 3.0, 14.0, 0.1728395061728395, 27.493827160493826, 32.76543209876543, 3.2857142857142856, 18.214285714285715, 3.0714285714285716, 3.255427209766844, 0.04938271604938271, 0.0, 0.3950617283950617, 0.12345679012345678, 0.00224517287831163])
bad domains: ('mobily.com.sa', [16.0, 1.0, 4.0, 12.0, 0.75, 47.3125, 108.8125, 1.0, 5.333333333333333, 0.0, 1.9166666666666667, 0.6875, 0.0, 0.375, 0.375, 0.0066050198150594455])
bad domains: ('vcl2728.com', [40.0, 2.0, 10.0, 27.0, 0.675, 67.125, 462.85, 3.3333333333333335, 28.555555555555557, 3.3703703703703702, 3.111111111111111, 0.025, 0.0, 0.0, 0.0, 0.00186219739292365])
bad domains: ('vkcache.com', [598.0, 1.0, 2.0, 528.0, 0.882943143812709, 47.0, 161.65886287625418, 1.0, 6.0, 0.005681818181818182, 2.453875312427234, 0.22909698996655517, 0.0, 0.11371237458193979, 0.0033444816053511705, 0.00017789795773144525])
bad domains: ('nsconcreteblock.info', [18.0, 2.0, 4.0, 18.0, 1.0, 87.0, 43.5, 1.0, 37.0, 5.0, 3.823329582775343, 1.0, 0.0, 0.0, 0.0, 0.0031928480204342275])
bad domains: ('topcdn.org', [52.0, 2.0, 4.0, 13.0, 0.25, 80.92307692307692, 56.38461538461539, 1.0, 40.92307692307692, 0.0, 4.176988788169356, 0.5, 0.0, 0.28846153846153844, 0.21153846153846154, 0.001188212927756654])
bad domains: ('bilibiligame.net', [6472.0, 165.0, 17.0, 32.0, 0.004944375772558714, 46.542954264524106, 88.28522867737948, 1.0, 18.65625, 2.84375, 3.4818361348887463, 0.9610630407911002, 0.0, 0.2376390605686032, 0.0004635352286773795, 1.659883277007961e-05])
bad domains: ('vip.', [2183.0, 386.0, 30.0, 32.0, 0.014658726523133303, 34.78515803939533, 23.834631241410904, 1.9375, 9.6875, 0.0, 2.83937270784057, 0.9436555199267064, 0.0, 0.09894640403114979, 0.011452130096197893, 6.58449220396123e-05])
bad domains: ('ixigua.com', [2707.0, 133.0, 29.0, 17.0, 0.006280014776505356, 33.71222755818249, 123.10749907646841, 1.0, 4.647058823529412, 0.8823529411764706, 1.9781718484300252, 0.9759881787957149, 0.0, 0.28075360177318065, 0.01699298115995567, 5.478911668986072e-05])
bad domains: ('expressvpn.', [890.0, 31.0, 36.0, 165.0, 0.1853932584269663, 41.89887640449438, 0.0, 1.0363636363636364, 11.224242424242425, 0.05454545454545454, 3.0592421535372565, 0.5325842696629214, 0.0, 0.0, 0.0, 0.00013408420488066506])

输入数据样例(已经提取了特征):

(u'abfxsc.com', (24, 1, 4, 11, 0.4583333333333333, 48.0, 56.041666666666664, 1.0, 8.0, 0.0, 3.0, 0.5, 0.0, 0.20833333333333334, 0.08333333333333333, 0.004340277777777778))
(u'dqdkws.cn', (71, 2, 7, 50, 0.704225352112676, 45.0, 79.859154929577471, 1.0, 6.0, 0.0, 2.4132632507067329, 0.5915492957746479, 0.0, 0.0, 0.0, 0.0015649452269170579))
(u'tcdnvod.com', (701, 51, 17, 40, 0.05706134094151213, 55.266761768901567, 56.370898716119832, 3.1749999999999998, 17.399999999999999, 0.125, 3.4810606143066232, 0.9714693295292439, 0.0, 0.39514978601997147, 0.0442225392296719, 0.00012905890248309329))
(u'0937jyg.com', (68, 4, 7, 19, 0.27941176470588236, 46.25, 67.529411764705884, 1.0, 5.3684210526315788, 0.0, 2.2469056830015672, 0.6323529411764706, 0.0, 0.0, 0.0, 0.001589825119236884))
(u'jcloud-cdn.com', (61, 3, 3, 11, 0.18032786885245902, 67.278688524590166, 66.311475409836063, 4.5454545454545459, 24.363636363636363, 0.18181818181818182, 3.5244668708659161, 0.4262295081967213, 0.0, 0.08196721311475409, 0.03278688524590164, 0.0012183235867446393))
(u'omacloud.com', (545, 8, 20, 29, 0.05321100917431193, 46.315596330275227, 30.722935779816513, 1.9655172413793103, 17.793103448275861, 0.0, 3.3836270422458083, 1.0, 0.0, 0.10825688073394496, 0.022018348623853212, 0.00019808256081134618))
(u'serverss.top', (144, 1, 15, 22, 0.1527777777777778, 46.604166666666664, 50.145833333333336, 1.0, 4.5909090909090908, 0.0, 2.1594720075625, 0.5277777777777778, 0.0, 0.2777777777777778, 0.06944444444444445, 0.00074504544777231408))
(u'ctripgslb.com', (601, 9, 10, 34, 0.056572379367720464, 60.512479201331118, 157.12479201331115, 3.0588235294117645, 17.911764705882351, 0.91176470588235292, 3.3912394967901913, 0.8585690515806988, 0.0, 0.3594009983361065, 0.016638935108153077, 0.00013748350197976243))
(u'kas-labs.com', (54, 2, 8, 15, 0.2777777777777778, 55.888888888888886, 142.37037037037038, 1.0, 12.466666666666667, 1.6000000000000001, 3.0989151803147923, 0.5, 0.0, 0.09259259259259259, 0.09259259259259259, 0.0016567263088137839))
(u'mccdnglb.com', (365, 4, 6, 21, 0.057534246575342465, 51.161643835616438, 98.161643835616445, 3.5238095238095237, 18.428571428571427, 0.19047619047619047, 3.4116298602195974, 0.989041095890411, 0.0, 0.16164383561643836, 0.01643835616438356, 0.00026775195458926852))
(u'localhost.', (28, 4, 3, 10, 0.35714285714285715, 41.142857142857146, 172.35714285714286, 1.8999999999999999, 10.9, 1.8999999999999999, 2.3999999999999999, 0.14285714285714285, 0.0, 0.0, 0.0, 0.004340277777777778))
(u'xdy-cdn.cn', (473, 5, 2, 50, 0.10570824524312897, 54.780126849894295, 46.545454545454547, 3.0, 14.74, 0.0, 3.1343677127142864, 0.5750528541226215, 0.0, 0.0, 0.0, 0.00019296823742811933))
(u'labkas.com', (24, 2, 6, 10, 0.4166666666666667, 56.666666666666664, 66.833333333333329, 2.0, 17.399999999999999, 1.7, 3.6751008468322333, 0.08333333333333333, 0.0, 0.0, 0.0, 0.0036764705882352941))
(u'site.', (62, 5, 22, 14, 0.22580645161290322, 43.322580645161288, 50.774193548387096, 1.9285714285714286, 11.785714285714286, 0.21428571428571427, 3.0365341332026929, 0.5806451612903226, 0.0, 0.11290322580645161, 0.06451612903225806, 0.0018615040953090098))
(u'ft25882.com', (39, 2, 5, 20, 0.5128205128205128, 49.0, 92.871794871794876, 1.0, 8.0, 0.0, 3.0, 0.5384615384615384, 0.0, 0.3076923076923077, 0.05128205128205128, 0.0026164311878597592))
(u'douyuyuba.com', (232, 4, 7, 115, 0.4956896551724138, 62.650862068965516, 97.504310344827587, 2.0, 21.530434782608694, 0.97391304347826091, 3.4599350912323117, 0.5560344827586207, 0.0, 0.25, 0.008620689655172414, 0.00034399724802201581))
(u'win.', (334, 7, 39, 23, 0.0688622754491018, 42.604790419161674, 60.008982035928142, 1.8695652173913044, 13.217391304347826, 0.21739130434782608, 2.9398183078690807, 0.7904191616766467, 0.0, 0.3772455089820359, 0.041916167664670656, 0.00035137034434293746))
(u'affise.com', (73, 3, 10, 10, 0.136986301369863, 49.246575342465754, 146.56164383561645, 1.0, 8.5, 0.0, 2.5368841208873407, 0.6027397260273972, 0.0, 0.273972602739726, 0.0547945205479452, 0.0013908205841446453))
(u'stripcdn.com', (46, 3, 8, 17, 0.3695652173913043, 44.043478260869563, 160.54347826086956, 1.0, 3.8823529411764706, 0.52941176470588236, 1.8718920798583554, 0.391304347826087, 0.0, 0.10869565217391304, 0.10869565217391304, 0.0024679170779861796))
(u'doonoo.cn', (198, 1, 8, 19, 0.09595959595959595, 42.111111111111114, 66.060606060606062, 1.0, 3.1052631578947367, 0.0, 1.6286506585399816, 0.5, 0.0, 0.2222222222222222, 0.025252525252525252, 0.00059966418805468941))
(u'nii.ac.jp', (34, 3, 8, 16, 0.47058823529411764, 43.029411764705884, 34.529411764705884, 1.3125, 7.3125, 0.1875, 2.4667777025215347, 0.4411764705882353, 0.0, 0.08823529411764706, 0.08823529411764706, 0.0034176349965823649))
(u'78dm.net', (41, 5, 6, 11, 0.2682926829268293, 39.146341463414636, 66.634146341463421, 1.0, 3.3636363636363638, 0.18181818181818182, 1.3510446035661767, 0.7317073170731707, 0.0, 0.3170731707317073, 0.04878048780487805, 0.0031152647975077881))
(u'gosuncdn.com', (587, 5, 36, 40, 0.06814310051107325, 53.325383304940374, 204.61328790459967, 3.25, 15.699999999999999, 0.0, 3.3370338393801235, 0.5724020442930153, 0.0, 0.09540034071550256, 0.010221465076660987, 0.00015973420228739378))
(u'gfnormal04aj.com', (68, 2, 2, 33, 0.4852941176470588, 62.0, 58.970588235294116, 1.0, 16.0, 0.0, 3.4444634232339926, 0.5147058823529411, 0.0, 0.25, 0.058823529411764705, 0.0011859582542694497))
(u'mediatoday.co.kr', (13, 1, 3, 12, 0.9230769230769231, 50.46153846153846, 100.61538461538461, 1.0, 4.583333333333333, 0.0, 1.7623953076615158, 1.0, 0.0, 0.23076923076923078, 0.23076923076923078, 0.007621951219512195))
(u'qinsx.cn', (127, 4, 8, 14, 0.11023622047244094, 29.811023622047244, 51.362204724409452, 1.0, 1.9285714285714286, 0.0, 0.9285714285714286, 0.5905511811023622, 0.0, 0.30708661417322836, 0.06299212598425197, 0.0013206550449022716))

参考:http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest

使用isolation forest进行dns网络流量异常检测的更多相关文章

  1. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  2. 基于PySpark的网络服务异常检测系统 阶段总结(二)

    在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Descr ...

  3. alluxio网络流量异常分析【转】

    1. 介绍 2. 准备工作 2.1 tcpdump 2.2 winshark 2.3 安装iftop 2.4 alluxio网络通信相关的端口 3.iftop 锁定消耗流量最大的端口 4. dump数 ...

  4. activeMQ消费消息时网络流量异常大的问题

    http://www.cnblogs.com/baibaluo/archive/2012/12/24/2748468.html#2590289 公司有一个应用,多个线程从activeMQ中取消息,随着 ...

  5. 基于PySpark的网络服务异常检测系统 (四) Mysql与SparkSQL对接同步数据 kmeans算法计算预测异常

    基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans ...

  6. 网络KPI异常检测之时序分解算法

    时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识, ...

  7. Python机器学习笔记 异常点检测算法——Isolation Forest

    Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...

  8. isolation forest进行异常点检测

    一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择.在建树过程中, ...

  9. (转)isolation forest进行异常点检测

    原文链接:https://www.cnblogs.com/gczr/p/9156971.html 一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似, ...

随机推荐

  1. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  2. [AngularJS]Chapter 3 使用AngularJS构建应用程序

    本章内容提要: 如何布置AngularJS进行快速开发 开启服务器进行测试 使用Karma进行单元测试用例测试 编译压缩AngularJS进行生产 使用Batarang进行Debug 如何简化开发工作 ...

  3. HDU 5305 Friends (搜索+剪枝) 2015多校联合第二场

    開始对点搜索,直接写乱了.想了想对边搜索,尽管复杂度高.剪枝一下水过去了. 代码: #include<cstdio> #include<iostream> #include&l ...

  4. java-集合类(二)

    使用场景 1.多线程 (1)在jdk1.5之前原始的集合类中,仅仅有vector.stack.hashtable.enumeration等是线程安全的,其它的都是非线程安全的. 非线程安全的集合在多线 ...

  5. http协议无状态中的 "状态" 到底指的是什么?!(转载)

    转载自:https://www.cnblogs.com/bellkosmos/p/5237146.html   引子: 最近在好好了解http,发现对介绍http的第一句话[http协议是无状态的,无 ...

  6. Swift学习笔记(7):函数

    目录: 函数参数与返回值 参数标签和参数名称 可变参数 传入传出参数 函数类型 嵌套函数 函数是一段完成特定任务的独立代码片段,使用func标示函数名,使用->标示返回类型. ・可以为函数参数设 ...

  7. (转)script标签到底该放在哪里

    一般script标签会被放在头部或尾部.头部就是<head>里面,尾部一般指<body>里[4-5]. 将script放在<head>里,浏览器解析HTML,发现s ...

  8. (转载)你真的理解Android AIDL中的in,out,inout么?

    前言 这其实是一个很小的知识点,大部分人在使用AIDL的过程中也基本没有因为这个出现过错误,正因为它小,所以在大部分的网上关于AIDL的文章中,它都被忽视了——或者并没有,但所占篇幅甚小,且基本上都是 ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study(树状数组)

    Output For each question, output one line with one integer represent the answer. 样例输入 5 3 1 2 3 4 5 ...

  10. Mojo Core Embedder API

    This document is a subset of the Mojo documentation. Contents Overview Basic Initialization IPC Init ...