P2409 Y的积木

    • 77通过
    • 491提交
  • 题目提供者zhouyonglong
  • 标签云端评测
  • 难度普及+/提高

提交  讨论  题解

最新讨论

  • 这组数据几乎可以卡掉所有程…
  • 第一个题解有点问题
  • 求教大神 90分代码
  • 就是算的分组背包时间不够,…
  • 求解为何编译超时?
  • 有BUG

题目背景

Y是个大建筑师,他总能用最简单的积木拼出最有创意的造型。

题目描述

Y手上有n盒积木,每个积木有个重量。现在他想从每盒积木中拿一块积木,放在一起,这一堆积木的重量为每块积木的重量和。现在他想知道重量和最小的k种取法的重量分别是多少。(只要任意更换一块积木,就视为一种不同的取法。如果多种取法重量总和一样,我们需要输出多次。)

输入输出格式

输入格式:

第一行输入两个整数,n,k,意义如题目所描述。

每组数据接下来的n行,第一个整数为mi,表示第i盒积木的数量,在同一行有mi个整数,分别表示每个积木的重量。

输出格式:

一行,重量最小的k种取法的重量,要求对于每个数据,从小到大输出

输入输出样例

输入样例#1:

3 10
4 1 3 4 5
3 1 7 9
4 1 2 3 5
输出样例#1:

3 4 5 5 6 6 7 7 7 7

说明

对于30%的数据:2<=mi<=10,1<=n<=10

对于50%的数据:2<=mi<=50,1<=n<=50

对于100%的数据:2<=mi<=100,1<=n<=100,1<=k<=10000,每个积木的重量为不超过100的正整数,所有mi的积大于等于k。本题不卡常。

分析:显然搜索对于本题的数据而言是不行的,然后想到了一道题目,给你两个序列,从每个中选一个数相加,求和最小的k个,显然可以利用优先队列(小根堆)维护,但是对于本题而言较难维护,考虑dp.

一开始想的是根据题目给的数据来定状态,设f[i][j]为前i盒积木中第j小的方案,但是不知道怎么继续转移,换一种表示状态的方法.一般而言,计算的结果是不能充当状态的,例如j(可能表示不好),那么我们可以设f[i][j]为前i盒积木中重量为j的方案数,这样就避免了算第j小,那么f[i][j] = Σf[i-1][j-w[i][k]],w[i][k]为第i盒积木中第k个积木的重量,如果直接枚举的话不能过,还需要优化一下枚举的范围.计算出n盒积木中的最大和和最小和再枚举即可.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int n, k, w[][], f[][], sizee[], minnum,maxnum, sum; int main()
{
scanf("%d%d", &n, &k);
for (int i = ; i <= n; i++)
{
int m;
scanf("%d", &m);
int minn = ,maxx = ;
for (int j = ; j <= m; j++)
{
scanf("%d", &w[i][j]);
minn = min(w[i][j], minn);
maxx = max(w[i][j], maxx);
sum += w[i][j];
}
minnum += minn;
maxnum += maxx;
sizee[i] = m;
}
f[][] = ;
for (int i = ; i <= n; i++)
for (int j = ; j <= sizee[i]; j++)
for (int kk = w[i][j]; kk <= maxnum; kk++)
if (f[i][kk] <= k && f[i - ][kk - w[i][j]] <= k)
f[i][kk] += f[i - ][kk - w[i][j]];
else
f[i][kk] = k; int kk = ;
for (int i = minnum; i <= sum; i++)
if (f[n][i])
for (int j = ; j <= f[n][i]; j++)
{
kk++;
if (kk > k)
return ;
printf("%d ", i);
} return ;
}

洛谷P2409 Y的积木的更多相关文章

  1. 洛谷P5162 WD与积木 [DP,NTT]

    传送门 思路 真是非常套路的一道题-- 考虑\(DP\):设\(f_n\)为\(n\)个积木能搭出的方案数,\(g_n\)为所有方案的高度之和. 容易得到转移方程: \[ \begin{align*} ...

  2. 洛谷 P5162 WD与积木【多项式求逆】

    设f[i]为i个积木能堆出来的种类,g[i]为i个积木能堆出来的种类和 \[ f[n]=\sum_{i=1}^{n}C_{n}^{i}g[n-i] \] \[ g[n]=\sum_{i=1}^{n}C ...

  3. 洛谷 P5162 WD与积木 解题报告

    P5162 WD与积木 题目背景 WD整日沉浸在积木中,无法自拔-- 题目描述 WD想买\(n\)块积木,商场中每块积木的高度都是\(1\),俯视图为正方形(边长不一定相同).由于一些特殊原因,商家会 ...

  4. P2409 Y的积木

    luogu月赛 暴力dfs,估计过不了几个点,大概也就得30分左右? #include <bits/stdc++.h> using namespace std; const int max ...

  5. 洛谷10月月赛Round.3

    Rank11:260=60+100+100 P2409 Y的积木 题目背景 Y是个大建筑师,他总能用最简单的积木拼出最有创意的造型. 题目描述 Y手上有n盒积木,每个积木有个重量.现在他想从每盒积木中 ...

  6. 洛谷P2342-叠积木

    Problem 洛谷P2342-叠积木 Accept: 373   Submit: 1.1k Time Limit: 1000 mSec    Memory Limit : 128MB Problem ...

  7. 【洛谷4005】小Y和地铁(搜索)

    [洛谷4005]小Y和地铁(搜索) 题面 洛谷 有点长. 题解 首先对于需要被链接的两个点,样例中间基本上把所有的情况都给出来了. 但是还缺了一种从下面绕道左边在从整个上面跨过去在从右边绕到下面来的情 ...

  8. BZOJ 4385 洛谷3594 POI2015 WIL-Wilcze doły

    [题解] 手残写错调了好久QAQ...... 洛谷的数据似乎比较水.. n个正整数!!这很重要 这道题是个类似two pointer的思想,外加一个单调队列维护当前区间内长度为d的子序列中元素之和的最 ...

  9. 洛谷OJ P1196 银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

随机推荐

  1. ✡ leetcode 171. Excel Sheet Column Number 字母转换为数字 --------- java

    Related to question Excel Sheet Column Title Given a column title as appear in an Excel sheet, retur ...

  2. 关于SQL Cookbook里dept与emp表结构以及数据

    用MYSQL 写了一下,将number变成int, to_date去掉即可. DROP TABLE IF EXISTS `dept`; CREATE TABLE `dept` ( `DEPTNO` ) ...

  3. PHP文件和目录操作-----复制、移动、重命名、删除文件

    PHP通过copy()函数来复制一个文件.用法如下: bool copy(string $source, string $dest) 其中$source是源文件的路径,$dest是目的文件的路径.函数 ...

  4. grunt压缩js文件

    grunt是node中很好的管理项目的工具,利用它可以实现对整个项目的管理,避免很多重复性的工作如合并.压缩,检查语法等. 使用grunt首先要安装node环境,nodejs官网http://node ...

  5. flask请求管道

    请求管道,登录前的验证,否则重定向到登录页面. # coding: utf8 from flask import render_template, request, g, session, redir ...

  6. MySQL 升级

    http://www.oschina.net/translate/mysql-upgrade-best-practices

  7. Oracle补习班第三天

    In every triumph, there's a lot of try. 每个胜利背后都有许多尝试 Oracle管理实例组件 主要组件分为两部分例程,与数据库: 例程分为两部分SGA跟进程: S ...

  8. golang

    Golang, 以17个简短代码片段,切底弄懂 channel 基础 (原创出处为本博客:http://www.cnblogs.com/linguanh/) http://www.cnblogs.co ...

  9. EventBus--介绍

    注意: 1,post()方法里面的类型和onEvent()中的类型要一致., 2,订阅者对象中 必须有 onEvent 的 public 方法     ---public void onEvent(O ...

  10. JLINK通过JFLASH烧写bin文件报错处理方法

    错误原因:烧写开始地址出错,打开BIN文件后弹出的设置开始地址不正确不能为0 解决措施:用J-FLASH LITE或者将开始地址设置成正确的地址(KEILMDK中IROM1的开始地址