Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:

  1. Only one letter can be changed at a time
  2. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

Note:

  • Return an empty list if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Example 1:

Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"] Output:
[
["hit","hot","dot","dog","cog"],
  ["hit","hot","lot","log","cog"]
]

Example 2:

Input:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"] Output: [] Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.

个人感觉这道题是相当有难度的一道题,它比之前那道 Word Ladder 要复杂很多,全场第四低的通过率 12.9% 正说明了这道题的难度,博主也是研究了网上别人的解法很久才看懂,然后照葫芦画瓢的写了出来,下面这种解法的核心思想是 BFS,大概思路如下:目的是找出所有的路径,这里建立一个路径集 paths,用以保存所有路径,然后是起始路径p,在p中先把起始单词放进去。然后定义两个整型变量 level,和 minLevel,其中 level 是记录循环中当前路径的长度,minLevel 是记录最短路径的长度,这样的好处是,如果某条路径的长度超过了已有的最短路径的长度,那么舍弃,这样会提高运行速度,相当于一种剪枝。还要定义一个 HashSet 变量 words,用来记录已经循环过的路径中的词,然后就是 BFS 的核心了,循环路径集 paths 里的内容,取出队首路径,如果该路径长度大于 level,说明字典中的有些词已经存入路径了,如果在路径中重复出现,则肯定不是最短路径,所以需要在字典中将这些词删去,然后将 words 清空,对循环对剪枝处理。然后取出当前路径的最后一个词,对每个字母进行替换并在字典中查找是否存在替换后的新词,这个过程在之前那道 Word Ladder 里面也有。如果替换后的新词在字典中存在,将其加入 words 中,并在原有路径的基础上加上这个新词生成一条新路径,如果这个新词就是结束词,则此新路径为一条完整的路径,加入结果中,并更新 minLevel,若不是结束词,则将新路径加入路径集中继续循环。写了这么多,不知道你看晕了没有,还是看代码吧,这个最有效:

class Solution {
public:
vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {
vector<vector<string>> res;
unordered_set<string> dict(wordList.begin(), wordList.end());
vector<string> p{beginWord};
queue<vector<string>> paths;
paths.push(p);
int level = , minLevel = INT_MAX;
unordered_set<string> words;
while (!paths.empty()) {
auto t = paths.front(); paths.pop();
if (t.size() > level) {
for (string w : words) dict.erase(w);
words.clear();
level = t.size();
if (level > minLevel) break;
}
string last = t.back();
for (int i = ; i < last.size(); ++i) {
string newLast = last;
for (char ch = 'a'; ch <= 'z'; ++ch) {
newLast[i] = ch;
if (!dict.count(newLast)) continue;
words.insert(newLast);
vector<string> nextPath = t;
nextPath.push_back(newLast);
if (newLast == endWord) {
res.push_back(nextPath);
minLevel = level;
} else paths.push(nextPath);
}
}
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/126

类似题目:

Word Ladder

参考资料:

https://leetcode.com/problems/word-ladder-ii/

http://yucoding.blogspot.com/2014/01/leetcode-question-word-ladder-ii.html

https://leetcode.com/problems/word-ladder-ii/discuss/40487/Java-Solution-with-Iteration

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Word Ladder II 词语阶梯之二的更多相关文章

  1. [LeetCode] 126. Word Ladder II 词语阶梯之二

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  2. [LeetCode] 126. Word Ladder II 词语阶梯 II

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  3. [LeetCode] Word Pattern II 词语模式之二

    Given a pattern and a string str, find if str follows the same pattern. Here follow means a full mat ...

  4. [LeetCode] Word Search II 词语搜索之二

    Given a 2D board and a list of words from the dictionary, find all words in the board. Each word mus ...

  5. [leetcode]Word Ladder II @ Python

    [leetcode]Word Ladder II @ Python 原题地址:http://oj.leetcode.com/problems/word-ladder-ii/ 参考文献:http://b ...

  6. LeetCode :Word Ladder II My Solution

    Word Ladder II Total Accepted: 11755 Total Submissions: 102776My Submissions Given two words (start  ...

  7. LeetCode: Word Ladder II 解题报告

    Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation s ...

  8. LeetCode: Word Ladder II [127]

    [题目] Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) ...

  9. [LeetCode] 212. Word Search II 词语搜索之二

    Given a 2D board and a list of words from the dictionary, find all words in the board. Each word mus ...

随机推荐

  1. SQL Server 统计信息更新时采样百分比对数据预估准确性的影响

    为什么要写统计信息 最近看到园子里有人写统计信息,楼主也来凑热闹. 话说经常做数据库的,尤其是做开发的或者优化的,统计信息造成的性能问题应该说是司空见惯. 当然解决办法也并非一成不变,“一招鲜吃遍天” ...

  2. 剖析 HTTP 协议

    HTTP 概述 HTTP 是什么? HTTP(HyperText Transfer Protocol,超文本传输协议)是WWW (World Wide Web)实现数据通信的基石. HTTP是由IET ...

  3. CloudNotes之领域建模篇:领域模型简介

    CloudNotes领域模型还是相对简单的,并不一定需要采用面向领域驱动的设计方法来解决CloudNotes的领域问题.但出于以下几个方面的原因,我还是采用了面向领域驱动的方式来开发CloudNote ...

  4. 关于Agile Scrum的笔记

    Roles: Scrum Master -- advisor but leader, 替Team消除障碍 Product Owner -- 定sprint的交付内容, 优先级 Team -- 干活的, ...

  5. MVC发布到虚拟主机上出现的错误

    问题1:无法识别的属性“targetFramework”.请注意属性名称区分大小写. 现象:无法识别的属性“targetFramework”.请注意属性名称区分大小写. 原因:站点中部署的Web使用的 ...

  6. PowerDesigner从Sqlserver中反转为带注释的字典及快捷键操作

    PowerDesigner的操作经常忘记,所以把常用的功能记录下来备忘. 1.修改反转过来的字段 PowerDesigner从数据库反转的时候,默认不带注释,需要先进行修改. 输入如下脚本: {OWN ...

  7. 跨平台日志清理工具 Log-Cutter v2.0.1 正式发布

    Log-Cutter 是JessMA开源组织开发的一个简单实用的日志切割清理工具.对于服务器的日常维护来说,日志清理是非常重要的事情,如果残留日志过多则严重浪费磁盘空间同时影响服务的性能.如果用手工方 ...

  8. Mac下安装ElasticSearch

    简单记录一下安装ES的过程,给小小白们提供一下参考: 下载安装包 https://www.elastic.co/downloads/elasticsearch建议下载2.3.2版本,最新的5.0.0版 ...

  9. jsPanel插件Option总结

    jsPanel插件Option总结 学习jsPanel之余对相关的选项进行了总结,便于参考. # 选项名称 类别 简要说明 1 autoclose configuration 设置一个时间在毫秒后,面 ...

  10. 写给自己:修改配置文件一定要cp一个.bak

    写给自己:修改配置文件一定要cp一个.bak 毕竟不是每次的修改都一定对,而且很多时候是在服务器上直接修改原文件,修改后重启服务才知道是否修改正确,如果不加备份修改,造成服务器动荡,将会造成不可挽回的 ...