吐槽

计算几何这种东西qwq一开始真的觉得恶心qwq(主要是总觉得为啥画图那么直观的东西非要写一大堆式子来求qwq真的难受qwq)

但其实静下心来学习的话感觉还是很妙的ovo题目思考起来也十分好玩ovo

正题

学习凸包需要一点前置技能:极角,向量点积,向量叉积

1.极角

​ 在平面上取一定点\(O\),从\(O\)引一条水平射线\(Ox\),规定方向自左至右,再选定一个长度单位并规定角旋转的正方向(通常取逆时针方向),这样就构成了一个极坐标系,其中\(O\)叫做极点,射线\(Ox\)叫做极轴

​ 在极坐标系中,平面上任意一点到极点的连线和极轴的夹角叫做极角

2.向量点积

​ 一般写作:\(\vec a \bullet \vec b\),几何定义为
\[
\vec a \bullet \vec b = |\vec a||\vec b|\cdot cos\theta
\]
​ 其中\(\theta\)为两个向量的夹角,该定义只针对二维和三维(其他的。。暂时不需要用到所以就先不写了qwq),其实可以简单理解为第一个向量投影到第二个向量上的长度(就是作垂直啦其实),所以其实点积是个标量

​ 特别的,如果是在二维平面中,两个向量\(\vec a = (x_1,y_1)\)和\(\vec b = (x_2,y_2)\)的点积可以表示为
\[
\vec a\bullet\vec b = x_1x_2 +y_1y_2
\]
​ 点积满足交换律

3.向量叉积

​ 一般写作:\(\vec a × \vec b\),定义为
\[
\vec a × \vec b= ab \cdot sin \theta
\]
​ 其中\(\theta\)为两个向量的夹角,简单理解的话就是两个向量围成的平行四边形的面积(但是是有正负的)

​ 与点积不同的是,叉积是个矢量,带方向的

​ 在二维平面中,两个向量\(\vec a = (x_1,y_1)\)和\(\vec b = (x_2,y_2)\)的叉积可以表示为
\[
\vec a × \vec b = x_1y_2-x_2y_1
\]
​ 叉积不满足交换律,交换后的结果方向与原来相反(其实就是多个负号)

点积和叉积的几何意义十分好用,在题目中的应用很广泛,用起来也是很灵活的(具体还是要看题目说啦qwq不然都是空话)

好的然后我们正式开始讲凸包qwq

graham算法

​ 这个算法的思路十分简单粗暴,就是首先找到最下面最左边的那个点(先按照\(y\)排序有相同的再看\(x\)),然后把这个点定为极点,把剩下的点按照极角排序,极角相同就按照到极点的距离排,然后用一个栈记录凸包上的点,O(n)扫一遍,如果说当前的点在目前围成的凸包外,那么就说明栈顶的点应该在凸包内,一直退栈直到满足当前点在凸包上为止,再将当前点进栈,然后再看下一个点

​ 最后栈中的就是所有凸包上面的点啦ovo

​ 现在的问题就是怎么求极角以及判断当前点的位置

​ 这里有一个非常好的结论,\(\vec a\)如果满足\(\vec a × \vec b > 0\),那么说明\(\vec b\)在\(\vec a\)的逆时针方向,反之就是在顺时针

​ 那么极角其实我们可以直接用叉积来判断就好了,如果说两个向量的叉积\(>0\),那么前者的极角一定小于后者,如果等于0说明在同一条直线上,就用距离判断

​ 同样的我们就可以快速判断一个点是否在凸包外了

​ (这里是逆时针扫的)我们记当前栈顶的点为\(s_0\),栈顶的下一个点为\(s_1\),当前点为\(x\)

​ 画一下图就能发现,\(x\)在当前的凸包上当且仅当\(\overrightarrow{s_1x}\)在\(\overrightarrow{s_1s_0}\)的逆时针方向,也就是两个向量的叉积要大于0,这样就能快速判断\(x\)的位置了

​ 然后就这么一路扫一路操作就能得到凸包啦ovo

​ 如果说要分别求得上凸包和下凸包,那就一开始按照\(x\)排序相同再按照\(y\)排序,然后扫的时候用两个栈分别记录上下凸包,判断条件相反(一个是叉积<=0就退栈,一个是>=0就退栈)就ok了

​ 值得注意的是,这里的等号不能去掉,否则遇到多个坐标相同的点会出问题

旋转卡壳

​ 提到凸包就不能不提到这个算法啦

​ 以经典的求凸包直径做例子,首先讲一下大体思路

​ 首先可以发现,一个点与凸包中其他点的连线长度是一个单峰函数,所以如果要枚举的话一旦发现答案开始递减了就可以停止了,普通的暴力在枚举下一个点的答案的时候,会又从最靠近的那个点开始扫,但其实我们画个图观察一下会发现其实不用,只要把上一个点(记作\(x\))开始递减的那个点(记作\(i\)) 当做起点开始扫就可以了。原因的话是显然在\(i\)之前的那些点到\(x\)的距离会比到当前点的距离要长,所以根本就没有扫的必要了(只会直观证明qwq严格证明的话。。。不会qwq)

​ 这样一来我们就可以线性处理出直径啦ovo

​ 对于其他的问题,思路其实差不多,主要还是利用好单峰函数这个特点避免掉不必要的操作

动态加点

​ 如果说是动态加点的话,维护起来差不多,一点小改动

​ 将要加进来的点记作\(x\),我们先在当前的凸包上找到\(x\)前面和后面的两个点,形象理解就是能将\(x\)夹在中间的两个点(额。。其实实现起来用lower_bound就好了),然后从这里开始重新模拟一遍graham中退栈进栈的过程就好了

应用

​ 除了各种奇妙几何题之外,凸包还有一个很大的用处就是优化,最典型的例子就是斜率优化

​ 额不过这种东西的话。。好像还是要具体题目具体分析qwq反正总的应该就是转成点的形式然后乱搞就好了嗯qwq(好吧其实这种题目的重点应该都是推式子吧哈哈哈。。qwq)

【learning】凸包的更多相关文章

  1. HDU 6590 Code (判断凸包相交)

    2019 杭电多校 1 1013 题目链接:HDU 6590 比赛链接:2019 Multi-University Training Contest 1 Problem Description Aft ...

  2. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  3. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  6. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  7. Programming Learning - Based on Project

    Today when taking a bath I got a good idea that it is an efficient and interesting way to learn a ne ...

  8. [poj1113][Wall] (水平序+graham算法 求凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  9. 做中学(Learning by Doing)之背单词-扇贝网推荐

    做中学(Learning by Doing)之背单词-扇贝网推荐 看完杨贵福老师(博客,知乎专栏,豆瓣)的「继续背单词,8个月过去了」,我就有写这篇文章的冲动了,杨老师说: 有时候我会感觉非常后悔,如 ...

随机推荐

  1. Redis进阶实践之十二 Redis的Cluster集群动态扩容

    一.引言     上一篇文章我们一步一步的教大家搭建了Redis的Cluster集群环境,形成了3个主节点和3个从节点的Cluster的环境.当然,大家可以使用 Cluster info 命令查看Cl ...

  2. datatables行编辑中,某个字段用户显示和用于行编辑名称不同时的处理。

    比如tag这个字段,对应服务端bean的tag,但是在页面显示时需要为String类型的tagName,那么在行编辑时可以用以下的方式处理.

  3. 关于c++栈溢出的问题

    我自己定义了一个数据类型node,嵌套在另一个数据类型当中时候,用到了delete函数, 在我node的声明当中声明了几个指针 在我的析构函数中却调用了delet函数 结果程序结果是能跑出来 提示我栈 ...

  4. java9 - 异常处理

    Java异常 1.异常初见 System.out.println(1/0); 运行上面语句之后打印出: Exception in thread "main" java.lang.A ...

  5. OpenStack Ironic 常见问题

    whole disk和partition 镜像 whole disk镜像部署可以支持windows,但是不能自定义分区(可以通过cloud-init实现),分区表是做镜像的人确定好的,partitio ...

  6. SpringMVC的数据转换,格式化和数据校验

          在SpringMVC中,根据请求方法签名不同,将请求消息中的消息以一定的方式转换并绑定到请求方法的参数中,在请求信息到达真正调用处理方法的这一段时间内,SpringMVC还会完成很多其他的 ...

  7. CIF、DCIF、D1分辨率是多少?

    CIF简介: QCIF全称Quarter common intermediate format.QCIF是常用的标准化图像格式.在H.323协议簇中,规定了视频采集设备的标准采集分辨率.QCIF = ...

  8. vc++怎么可以直接刷掉MBR?搞笑的吧

    FILE * fd=fopen("\\\\.\\PHYSICALDRIVE0","rb+"); char buffer[512]; fread(buffer,5 ...

  9. javax.el.PropertyNotFoundException:Property 'statisDate' not found on type java.lang.String

    1.错误描述 javax.el.PropertyNotFoundException:Property 'statisDate' not found on type java.lang.String 2 ...

  10. (八)java垃圾回收和收尾

    垃圾回收机制:当一个对象不再被引用时,或者说当一个对象的引用不存在时,我们就认为该对象不再被需要,它所占用的内存就会被释放掉.     垃圾回收只是在程序执行过程中偶尔发生,java不同的运行时刻会产 ...