Description

题库链接

询问有多少个 \(1\sim N\) 的排列 \(P\) 满足“ \(\forall i\in[2,N], P_i>P_{\frac{i}{2}}\) ” 。对质数 \(P\) 取模。

\(1\leq N\leq 1000000,1\leq P\leq 10^9\)

Solution

容易发现满足题目需要的性质的序列就是满足堆性质的。那么可以在树(堆)上 \(DP\) 。

记 \(f_o\) 为在 \(o\) 节点及其子树中满足条件的编号方法数。

显然 \[f_o=f_{2o}f_{2o+1}C_{size_{2o}+size_{2o+1}}^{size_{2o}}\]

注意由于 \(p\) 不一定大于 \(n\) ,所以不能直接求逆。

Code

//It is made by Awson on 2018.3.22
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e6;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, p, a[N+5], b[N+5], f[N+5], size[N+5], num[N+5]; int C(int n, int m) {
if (num[n]-num[n-m]-num[m] == 0) return 1ll*a[n]*b[n-m]%p*b[m]%p;
return 0;
}
int dfs(int o) {
if (o*2 > n) {f[o] = 1; return size[o] = 1; }
if (o*2+1 > n) {size[o] = dfs(o*2)+1; f[o] = f[o*2]; return size[o]; }
size[o] = 1+dfs(o*2)+dfs(o*2+1);
f[o] = 1ll*f[o*2]*f[o*2+1]%p*C(size[o*2]+size[o*2+1], size[o*2+1])%p;
return size[o];
}
void work() {
read(n); read(p);
a[0] = b[0] = a[1] = b[1] = 1;
for (int i = 2; i <= n; i++) {
if (i%p) b[i] = -1ll*(p/i)*b[p%i]%p;
else b[i] = 1;
}
for (int i = 2; i <= n; i++) {
b[i] = 1ll*b[i]*b[i-1]%p;
if (i%p) a[i] = 1ll*a[i-1]*i%p;
else a[i] = a[i-1];
}
for (int i = 2; i <= n; i++) {
num[i] = num[i-1];
if (i%p == 0) {
int x = i;
while (x%p == 0) ++num[i], x /= p;
}
}
dfs(1); writeln((f[1]+p)%p);
}
int main() {work(); return 0; }

[ZJOI 2010]Perm 排列计数的更多相关文章

  1. 「ZJOI 2010」 排列计数

    题目链接 戳我 \(Solution\) 其实我们可以发现这题等价于让你求: 用\(1\)~\(n\)的数组成一个完全二叉树使之满足小根堆性质的方案数 于是我们可以考虑\(dp\) 假设我们现在在\( ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  4. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  5. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  6. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  7. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  8. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  9. bzoj2111 Perm 排列计数

    称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输 ...

随机推荐

  1. 庖丁解牛Linux内核学习笔记(1)--计算机是如何工作的

    存储程序计算机模型 冯诺依曼体系结构 冯诺依曼体系结构是存储程序计算机,什么叫存储程序计算机?从硬件角度说,假设有cpu和内存,两者通过总线连接,在cpu内部有一个寄存器叫ip(instruction ...

  2. C博客作业--指针

    一.PTA实验作业 题目1:输出月份英文名 1. 本题PTA提交列表 2. 设计思路 3.代码截图 4.本题调试过程碰到问题及PTA提交列表情况说明. 选择这一题是因为这道题的通过率较低.为什么会这样 ...

  3. Beta冲刺 第一天

    Beta冲刺 第一天 1. 昨天的困难 由于今天还是第一天,所以暂时没有昨天的困难. 2. 今天解决的进度 潘伟靖: 对代码进行了review 1.将某些硬编码改为软编码 2.合并了一些方法,简化代码 ...

  4. Java的暑期作业

    Java暑期作业 一.<恶意>读书笔记 <恶意>是日本作家东野圭吾写的推理小说之一.看完后不禁为东野先生的奇特的写作手法以及书中所展现的人性的丑恶所震撼.我认为这本书相较< ...

  5. 视图和URL配置

    视图和URL配置 实验简介 上一章里我们介绍了如何创建一个Django项目并启动Django的开发服务器.本章你将学到用Django创建动态网页的基本知识. 同时,也教会大家怎么在本地机器上建立一个独 ...

  6. 剑指offer-链表中环的入口节点

    题目描述 一个链表中包含环,请找出该链表的环的入口结点. 解题思路 解决这个问题的第一步是如何确定一个链表中包含环.可以定义两个指针,同时从链表的头结点出发,一个指针一次走一步,另一个一次走两步.如果 ...

  7. IntelliJ IDEA sass环境配置及常见报错处理

    1.下载安装ruby,网上教程很多的,安装完之后在命令行输入ruby -v检查一下是否安装成功了.(注意安装的时候要勾选第二项).

  8. python的命名空间

    Python的命名空间是Python程序猿必须了解的内容,对Python命名空间的学习,将使我们在本质上掌握一些Python中的琐碎的规则. 接下来我将分四部分揭示Python命名空间的本质:一.命名 ...

  9. guava-19.0和google-collections-1.0 的 ImmutableSet 类冲突

    guava-19.0 google-collections-1.0 都有 ImmutableSet 类,包路径也一致,前者有 copyOf(Collection)? 一.应用报错: 二.解决办法 co ...

  10. OAuth2.0学习(1-9)新浪开放平台微博认证-web应用授权(授权码方式)

    1. 引导需要授权的用户到如下地址: URL 1 https://api.weibo.com/oauth2/authorize?client_id=YOUR_CLIENT_ID&respons ...