Description

题库链接

询问有多少个 \(1\sim N\) 的排列 \(P\) 满足“ \(\forall i\in[2,N], P_i>P_{\frac{i}{2}}\) ” 。对质数 \(P\) 取模。

\(1\leq N\leq 1000000,1\leq P\leq 10^9\)

Solution

容易发现满足题目需要的性质的序列就是满足堆性质的。那么可以在树(堆)上 \(DP\) 。

记 \(f_o\) 为在 \(o\) 节点及其子树中满足条件的编号方法数。

显然 \[f_o=f_{2o}f_{2o+1}C_{size_{2o}+size_{2o+1}}^{size_{2o}}\]

注意由于 \(p\) 不一定大于 \(n\) ,所以不能直接求逆。

Code

//It is made by Awson on 2018.3.22
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e6;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, p, a[N+5], b[N+5], f[N+5], size[N+5], num[N+5]; int C(int n, int m) {
if (num[n]-num[n-m]-num[m] == 0) return 1ll*a[n]*b[n-m]%p*b[m]%p;
return 0;
}
int dfs(int o) {
if (o*2 > n) {f[o] = 1; return size[o] = 1; }
if (o*2+1 > n) {size[o] = dfs(o*2)+1; f[o] = f[o*2]; return size[o]; }
size[o] = 1+dfs(o*2)+dfs(o*2+1);
f[o] = 1ll*f[o*2]*f[o*2+1]%p*C(size[o*2]+size[o*2+1], size[o*2+1])%p;
return size[o];
}
void work() {
read(n); read(p);
a[0] = b[0] = a[1] = b[1] = 1;
for (int i = 2; i <= n; i++) {
if (i%p) b[i] = -1ll*(p/i)*b[p%i]%p;
else b[i] = 1;
}
for (int i = 2; i <= n; i++) {
b[i] = 1ll*b[i]*b[i-1]%p;
if (i%p) a[i] = 1ll*a[i-1]*i%p;
else a[i] = a[i-1];
}
for (int i = 2; i <= n; i++) {
num[i] = num[i-1];
if (i%p == 0) {
int x = i;
while (x%p == 0) ++num[i], x /= p;
}
}
dfs(1); writeln((f[1]+p)%p);
}
int main() {work(); return 0; }

[ZJOI 2010]Perm 排列计数的更多相关文章

  1. 「ZJOI 2010」 排列计数

    题目链接 戳我 \(Solution\) 其实我们可以发现这题等价于让你求: 用\(1\)~\(n\)的数组成一个完全二叉树使之满足小根堆性质的方案数 于是我们可以考虑\(dp\) 假设我们现在在\( ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  4. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  5. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  6. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  7. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  8. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  9. bzoj2111 Perm 排列计数

    称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输 ...

随机推荐

  1. C语言博客作业—字符数组

    一.PTA实验作业 题目1:字符串转换成十进制整数 1. 本题PTA提交列表 2. 设计思路 (1)定义i为循环变量,number用于存放每一次转化的结果,flag用于判断是否为负数,p用于修改结果的 ...

  2. 冲刺NO.2

    Alpha冲刺第二天 站立式会议 项目进展 团队成员在确定了所需技术之后,开始学习相关技术的使用,其中包括了HTML5,CSS与SSH框架等开发技术.并且在项目分工配合加以总结和完善,对现有发现的关于 ...

  3. Django Haystack 全文检索与关键词高亮

    Django Haystack 简介 django-haystack 是一个专门提供搜索功能的 django 第三方应用,它支持 Solr.Elasticsearch.Whoosh.Xapian 等多 ...

  4. jquery基本使用和实例

    一.寻找元素 表单选择器 $(":input") //匹配所有 input, textarea, select 和 button 元素 $(":text") / ...

  5. EL表达式 与 servlvet3.0的新规范

    EL表达式 EL表达式 是一种简化的数据访问方式,是对jsp脚本的简化  . 如我们在一个页面中需要输出session的保存的一个值: <%  out.println(session.getAt ...

  6. css中的position

    一.position语法与结构 position语法: position : static absolute relative position参数:static : 无特殊定位,对象遵循HTML定位 ...

  7. python 常用算法学习(2)

    一,算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求 ...

  8. JAVA_SE基础——46.引用数据类型变量.值交换[独家深入解析]

    需求:定义一个函数交换数组中两个元素的位置. code 1: import java.util.*; class Demo3 { public static void main(String[] ar ...

  9. Oracle数据库游标精解

    游标 定义:标识结果集中数据行的一种容器(CURSOR),游标允许应用程序对查询语句返回的行结果集中的每一行进行相同或不同的操作,而不是一次对整个结果集进行同一种操作.实际上是一种能从包括多条数据记录 ...

  10. 第四章 JavaScript操作DOM对象

    第四章   JavaScript操作DOM对象 一.DOM操作 DOM是Document Object Model的缩写,即文档对象模型,是基于文档编程的一套API接口,1988年,W3C发布了第一级 ...