Description

题库链接

询问有多少个 \(1\sim N\) 的排列 \(P\) 满足“ \(\forall i\in[2,N], P_i>P_{\frac{i}{2}}\) ” 。对质数 \(P\) 取模。

\(1\leq N\leq 1000000,1\leq P\leq 10^9\)

Solution

容易发现满足题目需要的性质的序列就是满足堆性质的。那么可以在树(堆)上 \(DP\) 。

记 \(f_o\) 为在 \(o\) 节点及其子树中满足条件的编号方法数。

显然 \[f_o=f_{2o}f_{2o+1}C_{size_{2o}+size_{2o+1}}^{size_{2o}}\]

注意由于 \(p\) 不一定大于 \(n\) ,所以不能直接求逆。

Code

//It is made by Awson on 2018.3.22
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 1e6;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, p, a[N+5], b[N+5], f[N+5], size[N+5], num[N+5]; int C(int n, int m) {
if (num[n]-num[n-m]-num[m] == 0) return 1ll*a[n]*b[n-m]%p*b[m]%p;
return 0;
}
int dfs(int o) {
if (o*2 > n) {f[o] = 1; return size[o] = 1; }
if (o*2+1 > n) {size[o] = dfs(o*2)+1; f[o] = f[o*2]; return size[o]; }
size[o] = 1+dfs(o*2)+dfs(o*2+1);
f[o] = 1ll*f[o*2]*f[o*2+1]%p*C(size[o*2]+size[o*2+1], size[o*2+1])%p;
return size[o];
}
void work() {
read(n); read(p);
a[0] = b[0] = a[1] = b[1] = 1;
for (int i = 2; i <= n; i++) {
if (i%p) b[i] = -1ll*(p/i)*b[p%i]%p;
else b[i] = 1;
}
for (int i = 2; i <= n; i++) {
b[i] = 1ll*b[i]*b[i-1]%p;
if (i%p) a[i] = 1ll*a[i-1]*i%p;
else a[i] = a[i-1];
}
for (int i = 2; i <= n; i++) {
num[i] = num[i-1];
if (i%p == 0) {
int x = i;
while (x%p == 0) ++num[i], x /= p;
}
}
dfs(1); writeln((f[1]+p)%p);
}
int main() {work(); return 0; }

[ZJOI 2010]Perm 排列计数的更多相关文章

  1. 「ZJOI 2010」 排列计数

    题目链接 戳我 \(Solution\) 其实我们可以发现这题等价于让你求: 用\(1\)~\(n\)的数组成一个完全二叉树使之满足小根堆性质的方案数 于是我们可以考虑\(dp\) 假设我们现在在\( ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  4. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  5. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  6. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  7. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  8. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  9. bzoj2111 Perm 排列计数

    称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输 ...

随机推荐

  1. C#添加背景音乐

    <MediaElement Name="audio"/> <Button Name="music" Content="点我有音乐哦& ...

  2. alpha-咸鱼冲刺day8

    一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 正在进行页面整合.然后还有注册跟登陆的功能完善-- 四,问题困难 数据流程大概是搞定了.不过语法不是很熟悉,然后还有各种判定. ...

  3. 一个页面多个HTTP请求 页面卡顿!

    用promise解决 前两天面试的时候 一个面试官问到这样一个问题 这里先说出解决的路径 这几天会更新具体的做法 或者直接参考廖雪峰大神 地址如下: https://www.liaoxuefeng.c ...

  4. machine learning 之 导论 一元线性回归

    整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Ar ...

  5. Python-字符串及列表操作-Day2

    1.数据类型 1.1 变量引出数据类型 变量:用来记录状态变量值的变化就是状态的变化,程序运行的本质就是来处理一系列的变化 1.2 五大基本数据类型: 数字 字符串 列表 元组 字典 1.2.1 数字 ...

  6. kubernetes入门(07)kubernetes的核心概念(4)

    一.pod 二.Volume volume可以为容器提供持久化存储,比如 三.私有镜像 在使用私有镜像时,需要创建一个docker registry secret,并在容器中引用.创建docker r ...

  7. 前端开发必备之Chrome开发者工具(一)

    本文介绍的 Chrome 开发者工具基于 Chrome 65版本,如果你的 Chrome 开发者工具没有下文提到的那些内容,请检查下 Chrome 的版本 简介 Chrome 开发者工具是一套内置于 ...

  8. Python模块 - paramiko

    paramiko模块提供了ssh及sft进行远程登录服务器执行命令和上传下载文件的功能.这是一个第三方的软件包,使用之前需要安装. 1 基于用户名和密码的 sshclient 方式登录 # 建立一个s ...

  9. python/数据类型和变量

    数据类型和变量 数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是, 计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据, ...

  10. 在删除一个指针之后,一定将该指针设置成空指针(即在delete *p之后一定要加上: p=NULL)

    在删除一个指针之后,一定将该指针设置成空指针(即在delete *p之后一定要加上: p=NULL)