1858: [Scoi2010]序列操作

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 3079  Solved: 1475
[Submit][Status][Discuss]

Description

lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0 3 a b 询问[a, b]区间内总共有多少个1 4 a b 询问[a, b]区间内最多有多少个连续的1 对于每一种询问操作,lxhgww都需要给出回答,聪明的程序员们,你们能帮助他吗?

Input

输入数据第一行包括2个数,n和m,分别表示序列的长度和操作数目 第二行包括n个数,表示序列的初始状态 接下来m行,每行3个数,op, a, b,(0 < = op < = 4,0 < = a < = b)

Output

对于每一个询问操作,输出一行,包括1个数,表示其对应的答案

Sample Input

10 10
0 0 0 1 1 0 1 0 1 1
1 0 2
3 0 5
2 2 2
4 0 4
0 3 6
2 3 7
4 2 8
1 0 5
0 5 6
3 3 9

Sample Output

5
2
6
5

HINT

对于30%的数据,1<=n, m<=1000 对于100%的数据,1< = n, m < = 100000

Source

Day2

操作有点多
因为会出现反转,所以0和1的信息都要记录
0,1分别记录出现次数,左数最长长度,右数最长长度和区间最长长度
代码别写错就好

#include<cstdio>
#include<algorithm>
#include<iostream>
#define ll long long
#define inf 2147483647
#define N 100005
using namespace std;
struct node{
int sum[2],lm[2],rm[2],mx[2];
int l,r,cov,rev;
void sp(){
swap(sum[0],sum[1]);
swap(lm[0],lm[1]);
swap(rm[0],rm[1]);
swap(mx[0],mx[1]);
}
void init(){cov=-1;}
}t[N*4];int n,m;
void pushup(int u){
int l=u<<1,r=l|1;
for(int i=0;i<2;i++){
t[u].sum[i]=t[l].sum[i]+t[r].sum[i];
t[u].lm[i]=t[l].lm[i];
if(t[l].lm[i]==t[l].r-t[l].l+1)t[u].lm[i]+=t[r].lm[i];
t[u].rm[i]=t[r].rm[i];
if(t[r].rm[i]==t[r].r-t[r].l+1)t[u].rm[i]+=t[l].rm[i];
t[u].mx[i]=max(max(t[l].mx[i],t[r].mx[i]),t[l].rm[i]+t[r].lm[i]);
}
}
void swapp(int u){t[u].sp();}
void change(int u){
int k=t[u].cov,o=k^1;
t[u].sum[k]=t[u].lm[k]=t[u].rm[k]=t[u].mx[k]=t[u].r-t[u].l+1;
t[u].sum[o]=t[u].lm[o]=t[u].rm[o]=t[u].mx[o]=0;
}
void pushdown(int u){
int l=u<<1,r=l|1;
if(t[u].rev){
if(t[l].cov!=-1)t[l].cov^=1,swapp(l);
else t[l].rev^=1,swapp(l);
if(t[r].cov!=-1)t[r].cov^=1,swapp(r);
else t[r].rev^=1,swapp(r);
t[u].rev=0;
}
if(t[u].cov!=-1){
t[l].cov=t[r].cov=t[u].cov;
change(l);change(r);
t[u].cov=-1;
}
}
void build(int u,int l,int r){
t[u].l=l;t[u].r=r;t[u].init();
if(l==r){
int x;
scanf("%d",&x);int o=x^1;
t[u].sum[x]=t[u].lm[x]=t[u].rm[x]=t[u].mx[x]=1;
t[u].sum[o]=t[u].lm[o]=t[u].rm[o]=t[u].mx[o]=0;
return;
}
int mid=(l+r)>>1;
build(u<<1,l,mid);
build(u<<1|1,mid+1,r);
pushup(u);
}
void cover(int u,int l,int r,int op){
if(t[u].l==l&&t[u].r==r){
t[u].rev=0;
t[u].cov=op;
change(u);
return;
}
pushdown(u);
int mid=(t[u].l+t[u].r)>>1;
if(r<=mid)cover(u<<1,l,r,op);
else if(l>mid)cover(u<<1|1,l,r,op);
else{
cover(u<<1,l,mid,op);
cover(u<<1|1,mid+1,r,op);
}
pushup(u);
}
void reverse(int u,int l,int r){
if(t[u].l==l&&t[u].r==r){
if(t[u].cov!=-1){
t[u].cov^=1;
swapp(u);
return;
}
t[u].rev^=1;
swapp(u);
return;
}
pushdown(u);
int mid=(t[u].l+t[u].r)>>1;
if(r<=mid)reverse(u<<1,l,r);
else if(l>mid)reverse(u<<1|1,l,r);
else{
reverse(u<<1,l,mid);
reverse(u<<1|1,mid+1,r);
}
pushup(u);
}
int sum(int u,int l,int r){
if(t[u].l==l&&t[u].r==r)return t[u].sum[1];
pushdown(u);
int mid=(t[u].l+t[u].r)>>1;
if(r<=mid)return sum(u<<1,l,r);
else if(l>mid)return sum(u<<1|1,l,r);
return sum(u<<1,l,mid)+sum(u<<1|1,mid+1,r);
}
struct ans{int len,lm,rm,mx;};
ans query(int u,int l,int r){
if(t[u].l==l&&t[u].r==r){
ans p;
p=(ans){t[u].r-t[u].l+1,t[u].lm[1],t[u].rm[1],t[u].mx[1]};
return p;
}
pushdown(u);
int mid=(t[u].l+t[u].r)>>1;
if(r<=mid)return query(u<<1,l,r);
else if(l>mid)return query(u<<1|1,l,r);
else{
ans a=query(u<<1,l,mid);
ans b=query(u<<1|1,mid+1,r);
ans k=(ans){a.len+b.len,a.lm,b.rm,a.mx};
if(a.lm==a.len)k.lm+=b.lm;
if(b.rm==b.len)k.rm+=a.rm;
k.mx=max(k.mx,max(b.mx,a.rm+b.lm));
return k;
}
}
int main(){
scanf("%d%d",&n,&m);
build(1,1,n);
for(int i=1;i<=m;i++){
int op,l,r;
scanf("%d%d%d",&op,&l,&r);l++;r++;
if(op==1||op==0)cover(1,l,r,op);
if(op==2)reverse(1,l,r);
if(op==3)printf("%d\n",sum(1,l,r));
if(op==4){
ans a=query(1,l,r);
printf("%d\n",a.mx);
}
}
return 0;
}

bzoj1858[Scoi2010]序列操作 线段树的更多相关文章

  1. bzoj1858 [Scoi2010]序列操作——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1858 线段树...调了一个上午...(后面带 // 的都是改出来的) lazy 标记的下放好 ...

  2. 【BZOJ-1858】序列操作 线段树

    1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1961  Solved: 991[Submit][Status ...

  3. BZOJ 1858: [Scoi2010]序列操作( 线段树 )

    略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...

  4. 【bzoj1858】[Scoi2010]序列操作 线段树区间合并

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  5. Luogu P2572 [SCOI2010]序列操作 线段树。。

    咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...

  6. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  7. [SCOI2010]序列操作 线段树

    ---题面--- 题解: 在考场上打的这道题,出人意料的很快就打完了?! 直接用线段树,维护几个东西: 1,lazy标记 : 表示区间赋值 2,mark标记:表示区间翻转 3,l1:前缀最长连续的1的 ...

  8. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

  9. BZOJ1858 [Scoi2010]序列操作(线段树)

    题目链接 [Scoi2010]序列操作 考验代码能力的一道好题. 思想还是很简单的(直接上线段树),但是比较难写. #include <bits/stdc++.h> using names ...

随机推荐

  1. openfalcon

    一.环境准备 操作系统:centos7(minimal,www.centos.org下载的包是CentOS-7-x86_64-Minimal-1611.iso) 1.1 更换阿里yum(个人习惯) 步 ...

  2. Java8-如何构建一个Stream

    Stream的创建方式有很多种,除了最常见的集合创建,还有其他几种方式. List转Stream List继承自Collection接口,而Collection提供了stream()方法. List& ...

  3. python 类的绑定方法和非绑定方法

    一.绑定方法 1.对象的绑定方法 首先我们明确一个知识点,凡是类中的方法或函数,默认情况下都是绑定给对象使用的.下面,我们通过实例,来慢慢解析绑定方法的应用. class People: def __ ...

  4. 文本编辑器(KindEditord)

    1.下载 官网下载:http://kindeditor.net/down.php 本地下载:http://files.cnblogs.com/files/wupeiqi/kindeditor_a5.z ...

  5. 如何从二维数组中的多个key中获取指定key的值?

    精华 LOVEME96 2016-10-21 10:40:19 浏览(1512) 回答(3) 赞(0) 新手求教:二维数组中一般会有多个key,如果我们要获得指定key的值,应该怎么做? 问题标签: ...

  6. JS字符串和数组常用方法

    1.indexOf() – 返回字符串中一个字符第一处出现的索引,接收2个参数:要查找的字符,从哪个位置开始查找:.lastIndexOf()--返回字符串中某一个字符最后一次出现的索引值. 如果没有 ...

  7. js中call和apply的用法

    1. 每个函数都包含两个非继承而来的方法:call()方法和apply()方法. 2. 相同点:这两个方法的作用是一样的. 都是在特定的作用域中调用函数,等于设置函数体内this对象的值,以扩充函数赖 ...

  8. Linux OpenGL 实践篇-5 纹理

    纹理 在之前的实践中,我们所渲染的物体的表面颜色都是纯色或者根据顶点位置计算出的一个颜色,这种方式在表现物体细节方面是比较吃资源的,因为我们每增加一个细节,我们就需要定义更多的顶点及其属性.所以美术人 ...

  9. Java 内部类的意义及应用

    众所周知,我们的 C++ 程序语言是多继承制的,而多继承明显的好处就是,相对而言只需要写较少的代码即可完成一个类的定义,因为我们可以通过继承其它类来获取别人的实现. 但是,它也有一个致命性的缺陷,容易 ...

  10. sqlserver数据库导入Mysql数据库问题

    近来遇到一个问题,之前的项目用的是SQLServer数据库,但是现在要换成MySQL数据库,所有整理了一些数据导入的步骤,供需要的人参考! 第一步: 第二步: 第三步: 第四步: 第五步: 第六步: ...