题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3996

题解:

好题啊。
(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)
首先,那个式子可以化简为
D(某个数)=A * B * A' - C * A' ( A'为 A的倒置矩阵)
因为 A 为 01 矩阵,
把其考虑为 N个物品选或不选,
C[i]对应为i物品的花费,
而B[i,j]对应为同时选了i,j两个物品后带来的价值。
所以结合A,B,C的意义,用简单的矩阵知识去理解那个式子,
可以知道,D求得便是最大收益。
那么就转化为了 一个经典的最小割问题。(建图类似于网络流24道之太空飞行计划问题):
建立超源S,超汇T;
S -> (i,j) : B[i][j]
(i,j) -> (i) : INF
(i,j) -> (j) : INF
(i) -> T  : C[i]
然后 ANS=sum(B)-最小割

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 505*505
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int to[MAXN*8],cap[MAXN*8],nxt[MAXN*8],head[MAXN*2],ent;
void Init(){
ent=2; memset(head,0,sizeof(head));
}
void Adde(int u,int v,int w){
to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int cur[MAXN*2],d[MAXN*2];
int N,S,T,ANS;
int idx(int i,int j){
return j?(i-1)*N+j:N*N+i;
}
bool bfs(){
memset(d,0,sizeof(d));
queue<int>q; d[S]=1; q.push(S);
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
int v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f;
for(int &i=cur[u];i;i=E.Next(i,0)){
int v=E.to[i];
if(!E.cap[i]||d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int dinic(){//求最小割
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
int main()
{
E.Init();
scanf("%d",&N); S=N*N+N+1; T=S+1;
for(int i=1,x;i<=N;i++)
for(int j=1;j<=N;j++){
scanf("%d",&x); ANS+=x;
E.Adde(S,idx(i,j),x);
E.Adde(idx(i,j),idx(i,0),INF);
E.Adde(idx(i,j),idx(j,0),INF);
}
for(int i=1,x;i<=N;i++){
scanf("%d",&x);
E.Adde(idx(i,0),T,x);
}
ANS-=dinic();
printf("%d",ANS);
return 0;
}

●BZOJ 3996 [TJOI2015]线性代数的更多相关文章

  1. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  2. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  3. bzoj 3996: [TJOI2015]线性代数

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  4. bzoj 3996: [TJOI2015]线性代数【最小割】

    把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...

  5. 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1368  Solved: 832 Description 给 ...

  6. 【BZOJ】3996: [TJOI2015]线性代数

    题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...

  7. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  8. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

  9. 【LG3973】[TJOI2015]线性代数

    [LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...

随机推荐

  1. 理解Python迭代对象、迭代器、生成器

    作者:zhijun liu链接:https://zhuanlan.zhihu.com/p/24376869来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本文源自RQ作 ...

  2. 【iOS】Swift ?和 !(详解)

    Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值, 也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化 .如果在使用变量之前不进行初始化就会报错: [ ...

  3. 几种Java的JSON解析库速度对比

    java中哪个JSON库的解析速度是最快的? JSON已经成为当前服务器与WEB应用之间数据传输的公认标准,不过正如许多我们所习以为常的事情一样,你会觉得这是理所当然的便不再深入思考 了.我们很少会去 ...

  4. 09-移动端开发教程-Sass入门

    1. 引言 CSS3之前的CSS都大都是枚举属性样式,而编程语言强大的变量.函数.循环.分支等功能基本都不能在CSS中使用,让CSS的编程黯淡无光,Sass就是一种增强CSS编程的扩展语言(CSS4也 ...

  5. selenium在页面中多个fream的定位

    在做页面元素定位的时候,遇到多fream的页面定位比较困难,需要先去切换到元素所在的fream才能成功定位. 1,切换到目标fream: driver.switch_to.frame('freamID ...

  6. 关于团购VPS的事情报告

    作者 玄魂   2017-08-11 玄魂工作室-玄魂 玄魂工作室首先要抱歉,之前的说的继续组织大家购买vps的事情,不会再组织了.原因有以下几个:1)因为人多,需求各不相同,不好协调.2)服务都是购 ...

  7. hibernate_exercise-many- to-one(1)

    多对一关系 1.创建t_user表.t_group表 2.在eclipse中创建对应的实体类 package com.eneity; public class User { private int i ...

  8. spring-oauth-server实践:使用授权方式四:client_credentials 模式的客户端和服务端交互

    spring-oauth-server入门(1-11)使用授权方式四:client_credentials 模式的客戶端 一.客户端逻辑 1.界面入口(credentials_access_token ...

  9. zuul入门(1)zuul 的概念和原理

    一.zuul是什么 zuul 是netflix开源的一个API Gateway 服务器, 本质上是一个web servlet应用. Zuul 在云平台上提供动态路由,监控,弹性,安全等边缘服务的框架. ...

  10. bad interpreter:No such file or directory 解决方法

    今天在执行一个从网上考下来的脚本的时候,出现了下面的错误: Linux下面一个脚本死活也运行不了, 我检查了数遍,不可能有错. 提示:bad interpreter:No such file or d ...