●BZOJ 3996 [TJOI2015]线性代数
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3996
题解:
好题啊。
(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)
首先,那个式子可以化简为
D(某个数)=A * B * A' - C * A' ( A'为 A的倒置矩阵)
因为 A 为 01 矩阵,
把其考虑为 N个物品选或不选,
C[i]对应为i物品的花费,
而B[i,j]对应为同时选了i,j两个物品后带来的价值。
所以结合A,B,C的意义,用简单的矩阵知识去理解那个式子,
可以知道,D求得便是最大收益。
那么就转化为了 一个经典的最小割问题。(建图类似于网络流24道之太空飞行计划问题):
建立超源S,超汇T;
S -> (i,j) : B[i][j]
(i,j) -> (i) : INF
(i,j) -> (j) : INF
(i) -> T : C[i]
然后 ANS=sum(B)-最小割
代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 505*505
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int to[MAXN*8],cap[MAXN*8],nxt[MAXN*8],head[MAXN*2],ent;
void Init(){
ent=2; memset(head,0,sizeof(head));
}
void Adde(int u,int v,int w){
to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int cur[MAXN*2],d[MAXN*2];
int N,S,T,ANS;
int idx(int i,int j){
return j?(i-1)*N+j:N*N+i;
}
bool bfs(){
memset(d,0,sizeof(d));
queue<int>q; d[S]=1; q.push(S);
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
int v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f;
for(int &i=cur[u];i;i=E.Next(i,0)){
int v=E.to[i];
if(!E.cap[i]||d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int dinic(){//求最小割
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
int main()
{
E.Init();
scanf("%d",&N); S=N*N+N+1; T=S+1;
for(int i=1,x;i<=N;i++)
for(int j=1;j<=N;j++){
scanf("%d",&x); ANS+=x;
E.Adde(S,idx(i,j),x);
E.Adde(idx(i,j),idx(i,0),INF);
E.Adde(idx(i,j),idx(j,0),INF);
}
for(int i=1,x;i<=N;i++){
scanf("%d",&x);
E.Adde(idx(i,0),T,x);
}
ANS-=dinic();
printf("%d",ANS);
return 0;
}
●BZOJ 3996 [TJOI2015]线性代数的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- bzoj 3996: [TJOI2015]线性代数
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
- bzoj 3996: [TJOI2015]线性代数【最小割】
把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【LG3973】[TJOI2015]线性代数
[LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...
随机推荐
- MyGod--Beta版本前期报告
下一阶段需要改进完善的功能 1.完善购买功能,商品购买后,将生成申请订单,卖家将收到提醒.卖家在完成订单后,可以选择完成订单,商品将下架. 2.完善搜索功能,将界面中的搜索功能添加进去(简单考虑只搜索 ...
- 亚马逊AWS学习——EC2的自定义VPC配置
1 网络配置 EC2即亚马逊AWS云服务中的虚拟主机.创建EC2实例时如果使用的默认VPC并分配了公有IP是可以上网的.但我们经常需要自定义的网络环境,这时就需要自己定义VPC和子网了. 1.1 配置 ...
- 04_Linux目录文件操作命令1(mv ls cd...)_我的Linux之路
上一节已经给大家讲了Linux的目录结构,相信大家已经对Linux的整个目录结构有所了解 现实中,服务器(包含Linux,Unix,windows server)一般都摆放在机房里,因为一个机房摆放了 ...
- JAVA_SE基础——34.static修饰成员变量
需求:描述一下学校的学生. 特点:都是中国人.... 测试代码1: class Student{ String name; String country = "中国"; //国籍 ...
- 在Vim按了ctrl+s后
在windows我们码代码的时候习惯ctrl+s保存: 但在vim中使用ctrl+s之后终端就没反应了... vim: ctrl+s终止屏幕输出,敲的东西都有效,就是看不见. ctrl+q恢复:
- AngularJS1.X学习笔记9-自定义指令(中)
今天好大的雨啊!上一节中,我们的指令中的工厂函数中都是返回了一个叫做链接函数的工人函数,事实上我们的工厂函数也是可以返回一个对象,这个对象里面可以包含很多的属性,这使得我们可以创建更加强大的指令. 一 ...
- Mego开发文档 - 数据库建模
数据库建模 我们还提供了一些其他的特性,用于定制化数据库对应的数据结构. 表映射 框架默认会使用CLR类型名称做为实际数据库的表名,当两者不一致时可以使用该特性强制表名称. [Table(" ...
- Mego开发文档 - 处理并发冲突
处理并发冲突 数据库并发是指多个进程或用户同时访问或更改数据库中的相同数据的情况.并发控制是指用于确保存在并发更改时数据一致性的特定机制. Mego实现了乐观并发控制,这意味着它可以让多个进程或用户独 ...
- 阿里云API网关(14)流控策略
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- gradle入门(1-4)多项目构建实战
一.多项目构建 1.多项目构建概念 尽管我们可以仅使用单个组件来创建可工作的应用程序,但有时候更广泛的做法是将应用程序划分为多个更小的模块. 因为这是一个非常普遍的需求,因此每个成熟的构建工具都必须支 ...