Description

求两两互不同构的含n个点的简单图有多少种。

简单图是关联一对顶点的无向边不多于一条的不含自环的图。

a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b图一一对应。

Input

输入一行一个整数N,表示图的顶点数,0<=N<=60

Output

输出一行一个整数表示含N个点的图在同构意义下互不同构的图的数目,答案对997取模。

Sample Input

输入1
1

输入2
2

输入3
3

Sample Output

输出1
1

输出2
2

输出3
4

群论入门中
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
int Mod=;
lol n,A[],ans,fac[],cnt,num[],p[];
int gcd(int a,int b)
{
if (b==)
return a;
return gcd(b,a%b);
}
lol qpow(lol x,lol y)
{
lol res=;
while (y)
{
if (y&) res=(res*x)%Mod;
x=(x*x)%Mod;
y/=;
}
return res;
}
void dfs(int now,int left)
{int i,j;
lol sum1=,sum2=;
if (left==)
{
for (i=;i<=cnt;i++)
{
sum1+=((num[i]-)*num[i]/)*p[i]+p[i]/*num[i];
for (j=i+;j<=cnt;j++)
sum1+=num[i]*num[j]*gcd(p[i],p[j]);
sum2=sum2*fac[num[i]]*qpow(p[i],num[i])%Mod;
}
sum2=fac[n]*A[sum2%Mod];
ans=(ans+sum2*qpow(,sum1)%Mod)%Mod;
return;
}
if (now>left) return;
dfs(now+,left);
for (i=;i*now<=left;i++)
{
cnt++;
p[cnt]=now;
num[cnt]=i;
dfs(now+,left-i*now);
cnt--;
}
}
int main()
{int i;
cin>>n;
A[]=;A[]=;
for (i=;i<=;i++)
A[i]=((Mod-Mod/i)*A[Mod%i])%Mod;
fac[]=;
for (i=;i<=;i++)
fac[i]=(fac[i-]*i)%Mod;
dfs(,n);
for (i=;i<=n;i++)
ans=ans*A[i]%Mod;
cout<<ans;
}

[HNOI2009]图的同构的更多相关文章

  1. 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)

    [BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...

  2. bzoj1488[HNOI2009]图的同构

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec  M ...

  3. bzoj1488 [HNOI2009]图的同构 Burnside 引理

    题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...

  4. BZOJ 1488: [HNOI2009]图的同构 polay

    题意:两个图AB同构:把A的顶点重新编号后与B一模一样.求n个顶点的图一共有多少个?(同构的算一种) 思路:边有n*(n-1)/2,这些边可以有可以没有,所以等同于边的颜色有两种.然后将n划分成循环节 ...

  5. BZOJ 1488: [HNOI2009]图的同构 [Polya]

    完全图中选出不同构的简单图有多少个 上题简化版,只有两种颜色....直接copy就行了 太诡异了,刚才电脑上多了一个不动的鼠标指针,然后打开显卡管理界面就没了 #include<iostream ...

  6. [bzoj1488][HNOI2009]图的同构——Polya定理

    题目大意 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和边集能完全与b ...

  7. bzoj 1488: [HNOI2009]图的同构

    Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...

  8. bzoj 1488: [HNOI2009]图的同构【polya定理+dfs】

    把连边和不连边看成黑白染色,然后就变成了 https://www.cnblogs.com/lokiii/p/10055629.html 这篇讲得好!https://blog.csdn.net/wzq_ ...

  9. P4727 [HNOI2009]图的同构记数

    传送门 如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可 不过直接交上去会T,于是加了几发大力优化 不知为何华丽的被小号抢了rank2 ...

随机推荐

  1. servlet3.0注解loadOnStartup不起作用解决方案

    多次尝试3.0在源码中直接用注解配置loadOnStartup=1,即web应用启动时创建servlet实例,发现不起作用,但是在web.xml配置则可以正常运行.先上源码. package lee; ...

  2. JavaScript(第十八天)【DOM基础】

    学习要点: 1.DOM介绍 2.查找元素 3.DOM节点 4.节点操作 DOM(Document Object Model)即文档对象模型,针对HTML和XML文档的API(应用程序接口).DOM描绘 ...

  3. JavaScript(第十三天)【内置对象】

    学习要点: 1.Global对象 2.Math对象 ECMA-262对内置对象的定义是:"由ECMAScript实现提供的.不依赖宿主环境的对象,这些对象在ECMAScript程序执行之前就 ...

  4. Linux 复习

    shift + control + +  终端窗口放大 control + -   终端窗口缩小 ls -alh > laowang.txt 重定向,并覆盖源文件内容 ls -alh >& ...

  5. Hibernate与mysql的对应类型

    Hibernate映射类型 Java类型 标准SQL类型  integer  java.lang.Integer  integer  long  java.lang.Long  bigint  sho ...

  6. java截取一个字符串正数或倒数某个特定字符前后的内容

    取出正数第二个“.”后面的内容 public class TestCode { public static void main(String[] args) { String str ="2 ...

  7. JAVA_SE基础——13.选择结构语句

    if选择结构 语法: if(条件){ 代码块 } public class Test{ public static void main(String[] args){ int a = 5; if(a ...

  8. netty : NioEventLoopGroup 源码分析

    NioEventLoopGroup 源码分析 1. 在阅读源码时做了一定的注释,并且做了一些测试分析源码内的执行流程,由于博客篇幅有限.为了方便 IDE 查看.跟踪.调试 代码,所以在 github ...

  9. api-gateway实践(08)新服务网关 - 云端发布和日志查看

    一.发布应用 1.新建应用空间 1.1.新建应用空间 1.2.新建应用 1.3.上传程序包 2.创建应用引擎服务 3.发布应用 3.1.为应用容器绑定Web运行环境(应用引擎服务) 3.2.发布应用( ...

  10. io使用的设计模式

    File f = new File("c:/a.txt"); 1. FileInputStream fis = new FileInputStream(f); 2. Reader ...