【BZOJ1096】【ZJOI2007】仓库建设(斜率优化,动态规划)

题面

Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内

陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象

部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于

地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库

的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设

置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,

假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到

以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用

Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3

0 5 10

5 3 100

9 6 10

Sample Output

32

HINT

在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)5+(9-5)*3=57,总费用67,不如前者优。

【数据规模】

对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。

题解

很明显的斜率优化

先把暴力的\(O(n^{2})\)写出来

	for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+C[i]+(s[i]-s[j])-1ll*(x[i]-x[j])*p[j]);

然后拆公式。。。

我好懒呀。。。这题不想写公式了(其实是比较长)

把上面的转移再设出来两个\(j,k\)比较转移即可

具体怎么搞看斜率优化

直接上代码把。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1001000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
int n,x[MAX],p[MAX],C[MAX];
long long s[MAX],f[MAX],mm[MAX];
int h,t,Q[MAX];
double count(int j,int k)
{
return 1.0*((f[j]-mm[j])-(f[k]-mm[k]))/(p[j]-p[k]);
} int main()
{
n=read();
for(int i=1;i<=n;++i)
x[i]=read(),p[i]=read(),C[i]=read();
for(int i=1;i<=n;++i)p[i]+=p[i-1];
for(int i=1;i<=n;++i)s[i]=s[i-1]+(x[i]-x[i-1])*1ll*p[i-1];
for(int i=1;i<=n;++i)mm[i]=s[i]-1ll*x[i]*p[i];
for(int i=1;i<=n;++i)f[i]=1e18;
/*
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=min(f[i],f[j]+C[i]+(s[i]-s[j])-1ll*(x[i]-x[j])*p[j]);
*/
for(int i=1;i<=n;++i)
{
while(h<t&&count(Q[h],Q[h+1])<=x[i])h++;
int j=Q[h];
f[i]=f[j]+C[i]+(s[i]-s[j])-1ll*(x[i]-x[j])*p[j];
while(h<t&&count(Q[t-1],Q[t])>=count(Q[t-1],i))t--;
Q[++t]=i;
}
printf("%lld\n",f[n]);
return 0;
}

【BZOJ1096】【ZJOI2007】仓库建设(斜率优化,动态规划)的更多相关文章

  1. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  2. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

  3. BZOJ1096 [ZJOI2007]仓库建设——斜率优化

    方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一 ...

  4. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  5. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  6. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  7. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  8. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  9. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  10. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

随机推荐

  1. My97DatePicker选择两个日期范围不超过30天的demo

    需求 ExtJs下使用My97DatePicker对时间范围不超过30天进行选择. 关键点 使用全局变量. 对选择完的第一个日期进行逻辑判断.(我的逻辑能力还有待加强啊) 因为当选择了第一个框范围在超 ...

  2. C primer Plus_part6

    第十章  数组和指针 1.const :保护变量不受改变,特别是在作为入参传入函数 对于变量:const 不能修改值 对于指针: const 可以修改值,但是不能修改指向对象 #include< ...

  3. mysql-connector-java 6.x 时区设置

    最近遇到了一个问题,java从mysql从读出的时间与本地时间有14个小时的时间差,经查证.测试解决了此问题,在此总结一下: jdbc:mysql:&allowMultiQueries=tru ...

  4. 使用js dom和jquery分别实现简单增删改

    <html><head> <meta http-equiv="Content-Type" content="text/html; chars ...

  5. shell 颜色控制系列

    shell脚本里,经常用的颜色控制,如下 格式:echo -e "\033[字背景颜色:文字颜色m字符串\033[0m" eg:echo -e "\033[41;36m ...

  6. 关于Properties类常用的操作

    import java.io.*;import java.util.Enumeration;import java.util.Properties;/** * 关于Properties类常用的操作 * ...

  7. 大数相加(类似杭电acm1002)

    /*输入两个非常大的整数(完全超出了int.long的表示范围),这个整数的长度可能超过100位,计算并输出这两个数相加的结果.*/ //自己用题目所给的案例测试,输出是正确的,也能输出正确的结果,不 ...

  8. flask中jinjia2模板使用详解2

    接上文 注释的使用 在jinjia2模板中,使用{# #}进行代码注释,如下所示 运行后发现,注释不会被render出来 去掉空行 两种方法可以去掉jinjia2模板中的空白行,一是设置jinjia2 ...

  9. wpf通过VisualTreeHelper找到控件内所有CheckBox和TextBox并做相应绑定

    #region CheckBox与TextBox绑定 Dictionary<CheckBox, TextBox> CheckTextBoxDic = new Dictionary<C ...

  10. windows下常用工具

    下面是平时自用的一些软件,感觉挺好用的,推荐给大家咯. everything 搜索神器 faststone capture 红绿小工具,工具小功能强 clcl 复制粘贴神器 f.lux linux和w ...