The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8334   Accepted: 3218

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source


题意:从(0,5)走到(10,5)最短路

我太傻逼了,查了好长时间计算几何的错,结果是求DAG的DP忘清空vis了
 
线段相交做两个直线与线段相交就行了
注意本题一个端点在另一条线上不能算相交哦
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,M=1e4+;
const double INF=1e9;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
}l[N];
int cl;
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w))&&sgn(Cross(v,u))!=&&sgn(Cross(v,w))!=;
}
bool isSSI(Line l1,Line l2){
return isLSI(l1,l2)&&isLSI(l2,l1);
}
bool can(Point a,Point b){
Line line(a,b);
for(int i=;i<=cl;i++)
if(isSSI(l[i],line)) return false;
return true;
} int n,s,t;
struct edge{
int v,ne;
double w;
}e[M<<];
int h[N],cnt=;
inline void ins(int u,int v,double w){//printf("ins %d %d %lf\n",u,v,w);
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
}
double d[N];
int vis[N]; double dp(int u){
if(vis[u]) return d[u];
vis[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
d[u]=min(d[u],dp(v)+e[i].w);
}
return d[u];
}
void DAG(){
for(int i=s;i<=t;i++) d[i]=INF;
memset(vis,,sizeof(vis));
d[t]=;vis[t]=;
dp(s);
} Point p[N][];
Point S(,),T(,);
inline int idx(int u){return u%==?u/:u/+;}
inline int idy(int u){return u%==?:u%;}
double x;
int main(int argc, const char * argv[]) {
while(true){
n=read();s=;t=*n+;
if(n==-) break;
cnt=;memset(h,,sizeof(h));
cl=; for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf%lf",&x,&p[i][].y,&p[i][].y,&p[i][].y,&p[i][].y);
p[i][].x=p[i][].x=p[i][].x=p[i][].x=x;
int num=(i-)*;
//for(int j=1;j<=4;j++) p[i][j].print();
if(i==){
for(int j=;j<=;j++)
ins(s,num+j,DisPP(S,p[i][j]));
}else{
for(int j=;j<=;j++){
for(int u=;u<=num;u++){
if(can(p[idx(u)][idy(u)],p[i][j]))
ins(u,num+j,DisPP(p[idx(u)][idy(u)],p[i][j]));
}
if(can(S,p[i][j])) ins(s,num+j,DisPP(S,p[i][j]));
}
}
l[++cl]=Line(Point(x,),p[i][]);
l[++cl]=Line(p[i][],p[i][]);
l[++cl]=Line(p[i][],Point(x,));
}
int num=n*;
for(int u=;u<=num;u++)
if(can(p[idx(u)][idy(u)],T))
ins(u,t,DisPP(p[idx(u)][idy(u)],T));
if(can(S,T)) {puts("10.00");continue;}
DAG();
printf("%.2f\n",d[s]);
} return ;
}
 

POJ1556 The Doors [线段相交 DP]的更多相关文章

  1. POJ1556 最短路 + 线段相交问题

    POJ1556 题目大意:比较明显的题目,在一个房间中有几堵墙,直着走,问你从(0,5)到(10,5)的最短路是多少 求最短路问题,唯一变化的就是边的获取,需要我们获取边,这就需要判断我们想要走的这条 ...

  2. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  3. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  4. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  5. POJ 1066 Treasure Hunt (线段相交)

    题意:给你一个100*100的正方形,再给你n条线(墙),保证线段一定在正方形内且端点在正方形边界(外墙),最后给你一个正方形内的点(保证不再墙上) 告诉你墙之间(包括外墙)围成了一些小房间,在小房间 ...

  6. 简单几何(线段相交) POJ 1066 Treasure Hunt

    题目传送门 题意:从四面任意点出发,有若干障碍门,问最少要轰掉几扇门才能到达终点 分析:枚举入口点,也就是线段的两个端点,然后选取与其他线段相交点数最少的 + 1就是答案.特判一下n == 0的时候 ...

  7. poj 1066 线段相交

    链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  8. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  9. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

随机推荐

  1. 如何检测浏览器url变化

    用户通过“点击触发”,“操作历史”,“直接访问URL”的方式修改当前URL.这三种触发方式会使浏览器做出不同的行为 html5提供了两种方式在页面中操作历史 history.pushState(sta ...

  2. 客户端怎么查看SVN的代码库

    安装SVN客户端,比如TortoiseSVN,然后将代码库checkout到本地,或者通过客户端的版本库浏览器直接连接SVN服务器查看代码库的目录结构. 如果SVN服务器端安装的时候是和Apache集 ...

  3. linux一键安装

    http://source.docs.cloudcare.cn/support/faq/webfaq/webfaq_11/?spm=5176.730006-cmgj000262.102.8.QsmPR ...

  4. 为什么选择.NETCore?

    为什么.NETCore? 学习新的开发框架是一项巨大的投资.您需要学习如何在新框架中编写,构建,测试,部署和维护应用程序.作为开发人员,有许多框架可供选择,很难知道什么是最适合的工作.即使您正在使用. ...

  5. lodash源码分析之缓存使用方式的进一步封装

    在世界上所有的民族之中,支配着他们的喜怒选择的并不是天性,而是他们的观点. --卢梭<社会与契约论> 本文为读 lodash 源码的第九篇,后续文章会更新到这个仓库中,欢迎 star:po ...

  6. Performance Testing 前期准备以及场景设计

    性能测试的session参加过几个,也查阅了很多相关的资料.年前被分配了测试任务,一直拖到现在,准备开始做的时候,才发现真的是不知道如何做起啊.今天和同事聊了一下,有很大启发.测试小白一枚,只分享一下 ...

  7. JVM-类的四种载入方式

    package org.burning.sport.javase.classloader; public class ClassLoaderMain { public static void main ...

  8. Github终于连上了hexo

    2018-01-2722:59:28 我的妈呀,看看这感人的网速,哎不想吐槽在中国连外网的速度 总结一下连接过程吧 漫漫长征路,难的要死. 一.github的注册和使用不再详述 二.Git Desk ...

  9. Spring MVC CORS 跨域

    介绍 跨域CORS,全称是"跨域资源共享"(Cross-origin resource sharing) 当页面发出跨域请求时: 简单请求(先简单理解为正常的get/post吧): ...

  10. JAVA中利用反射机制进行对象和Map相互转换的方法

    JAVA的反射机制主要作用是用来访问对象的属性.方法等等.所以,JAVA中对象和Map相互转换可以利用JAVA的反射机制来实现.例子如下: 一.对象转Map的方法 public static Map& ...