浅谈RMQ

Today,我get到了一个新算法,开心....RMQ。

今天主要说一下RMQ里的ST算法(Sparse Table)。

RMQ(Range Minimum/Maximum Query),意思是对于一段区间,查询最大值最小值的一种数据结构。首先,我们很容易想到线段树,时空复杂度均为O(nlogn),但是RMQ的优越之处就在于它查询是O(1)的。

首先,我们先说一下RMQ的大体思想。用动态规划的想法来预处理出一些强大的式子。我们定义f[i][j],这是RMQ算法最核心的地方,关于f数组的定义。我们容易想到是i到j之间的最小值,但是在转移或者是处理上都比较的不方便,那如果是从i开始的j个数的最值呢?也是有一些局限性,所以,我们给出了一种思想,叫做倍增的想法。就是说我f[i][j]表示的是从i开始的$2^j$个数的最值。这样的处理的好处在于什么呢?我们发现,我可以将全局的任意的$2^j$块都处理出来,所用到的就是f[j][i]=max(f[j][i-1],f[j+(1<<(i-1))][i-1]);这个东西是我们是处理过的。显然,现在总区间内所有的$2^k$个数我们都处理过了。现在,我们思考如何查询。

查询时,我们想到,需要查询的区间不可能就是$2^j$的整倍数区间。所以,我们应该怎么做呢?从需要查询区间的左端点向右弄一个$2^k$记录一下,右端点向左再记录一遍。我们现在想求出k是几。这就是为什么RMQ只能求最值,因为存在覆盖的问题对吧,所以,我们思考一下,这个k的值是不是固定的呢?显然是。为什么,我们想求出$2^k$必须满足什么条件

  1.$2^k$必须大于需要查询区间的一半。

  2.$2^k$还要不大于整个需要被查询得区间。
这样来看,k就是最大的,且$2^k$不大于需要查询区间的长度。为什么此时的k-1不行,因为那样的话就会不满足第一个条件。所以,k是确定的。那么,k应该怎么求呢?此处切记,千万别用<cmath>,因为精度极其不准,我们采用o(n)预处理 log[i]=log[i>>1]+1。即可。

    最后,附上丑陋的版子.......

    预处理

 int n;
scanf("%d",&n);
for(int i=;i<=n;i++) log[i]=log[i>>]+;
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
}
for(int i=;i<=n;i++)
{
f[i][]=a[i];
}
for(int i=;(<<i)<=n;i++)
{
for(int j=;j+(<<i)-<=n;j++)
{
f[j][i]=max(f[j][i-],f[j+(<<(i-))][i-]);
}
}

    查询

 int m;
scanf("%d",&m);
int x,y;
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
int len=log[y-x+];
printf("%d\n",max(f[x][len],f[y-(<<len)+][len]));
}

    小结,这种数据结构的想法非常重要,虽然在使用上有一些局限性,但是它的想法是极其值得借鉴的。

浅谈-RMQ的更多相关文章

  1. 浅谈RMQ

    RMQ是一类求区间极值的问题 有一种 \(O\left(nlogn\right)\) 的解法,用倍增实现 倍增算法 变量的定义 \(A_i\) : 原数组 \(f_{i,j}\) : 以 \(i\) ...

  2. 浅谈 Fragment 生命周期

    版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...

  3. 浅谈 LayoutInflater

    浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...

  4. 浅谈Java的throw与throws

    转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...

  5. 浅谈SQL注入风险 - 一个Login拿下Server

    前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...

  6. 浅谈WebService的版本兼容性设计

    在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...

  7. 浅谈angular2+ionic2

    浅谈angular2+ionic2   前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别.   1. 项目所用:angular2+ionic2 ...

  8. iOS开发之浅谈MVVM的架构设计与团队协作

    今天写这篇博客是想达到抛砖引玉的作用,想与大家交流一下思想,相互学习,博文中有不足之处还望大家批评指正.本篇博客的内容沿袭以往博客的风格,也是以干货为主,偶尔扯扯咸蛋(哈哈~不好好工作又开始发表博客啦 ...

  9. Linux特殊符号浅谈

    Linux特殊字符浅谈 我们经常跟键盘上面那些特殊符号比如(?.!.~...)打交道,其实在Linux有其独特的含义,大致可以分为三类:Linux特殊符号.通配符.正则表达式. Linux特殊符号又可 ...

随机推荐

  1. 织梦dedecms列表序号从0到1开始的办法 autoindex,itemindex标签

    自增1 arclist            标签下使用 [field:global.autoindex/] 默认从1开始 channel         标签下使用 [field:global.au ...

  2. JDBC完成的三个基本工作

    JDBC完成的三个基本工作 1.与数据库建立连接 2.执行SQL语句 3.获得SQL语句的执行结果

  3. Jquery ajaxfileupload.js结合.ashx文件实现无刷新上传

    先上几张图更直观展示一下要实现的功能,本功能主要通过Jquery ajaxfileupload.js插件结合ajaxUpFile.ashx一般应用程序处理文件实现Ajax无刷新上传功能,结合NPOI2 ...

  4. directX视频播放------手动连接

    IGraphBuilder *pigb = NULL; IMediaControl *pimc = NULL; IMediaEventEx *pimex = NULL; IVideoWindow *p ...

  5. openfec的学习笔记

    openfec实现了多种纠删码的算法实现,就包括Reed-Solomon算法.其基本使用流程为:输入n个原始包的分组后,计算生成k个额外的冗余包,后续将这n+k包送到接收端,若发生原始包丢包,但只要总 ...

  6. 关于vue如何解决数据渲染完成之前,dom树显示问题

    在id="app"以下的标签中添加属性v-cloak 并且在css文件中添加[v-cloak]{display:none} 如果效果失效,这种原因是有几种可能,游览器大的解析加载速 ...

  7. JavaScript的作用域详解。

    首先讲原理,大家都知道JS是逐行执行,首先进入作用域只有有两种方式:  1.当看到script标签的时候,进入到作用域,也就是内置的<script></script>     ...

  8. JavaScript函数与对象

    函数 函数的定义 JavaScript中的函数和Python中的非常类似,只是定义方式有点区别. // 普通函数定义 function f1() { console.log("Hello w ...

  9. [BZOJ1306] [CQOI2009] match循环赛 (搜索)

    Description Input 第一行包含一个正整数n,队伍的个数.第二行包含n个非负整数,即每支队伍的得分. Output 输出仅一行,即可能的分数表数目.保证至少存在一个可能的分数表. Sam ...

  10. Vue-小demo、小效果 合集(更新中...)

    (腾讯课堂学习小demo:https://ke.qq.com/course/256052) 一.简单的指令应用 --打击灭火器 图片素材点击腾讯课堂的链接获取       html: <!DOC ...