中国剩余定理 CRT
中国剩余定理 CRT
正常版本CRT
要解的是一个很容易的东西
\[
\begin{aligned}
x\equiv a_1(mod\ m_1)\\
x\equiv a_2(mod\ m_2)\\
...\\
x\equiv a_n(mod\ m_n)
\end{aligned}
\]
保证\(m_1,m_2...m_n\)之间两两互质,求最小的\(x\)。
设\(M=\prod m_i\)。
首先我们确定一点,我们求出了任意一个满足条件的\(x\)之后,只需要对其模\(M\)就是最终的答案。
因为\(M\)是所有数的\(lcm\)。
考虑一下,对于每一个\(a_i\),如果我们能够求出一个数\(x_i\)
满足它是其他所有\(m\)的乘积,即\(M_i=M/m_i\)的倍数,并且\(x_i\equiv 1(mod\ m_i)\)
也就是对于任意一个\(x_i\),满足\(x_i\equiv 0(mod\ m_k),k\ne i\),\(x_i\equiv 1(mode\ m_i)\)
那么最终的答案就会是\(\sum(a_ix_i)mod\ M\)。
深思熟虑的考虑如何求出\(x_i\),
因为\(x_i\)是\(M_i\)的倍数,所以\(x_i=kM_i\equiv 1(mod\ m_i)\)
所以\(k\)是\(M_i\)在模\(m_i\)意义下的逆元。所以\(x_i\)就是\(k\)的\(M_i\)倍,注意最终统计入结果的模数是\(M\)。
所以,\(CRT\)的结果就是\(\sum (a_ik_iM_i)mod\ M\)。
不正常版本CRT
要求的东西同上,不保证所有\(m_i\)互质。
我们肯定不能像上面那样堆在一起求了。
换个方法,假设我们只有两个方程。\(x\equiv a_1(mod\ m_1),x\equiv a_2(mod\ m_2)\)
怎么算答案?
显然是要满足:\(x=x_1m_1+a_1=x_2m_2+a_2\),并且\(x\)最小。
显然是\(x_1,x_2\)都要尽可能的小。
所以\(x_1m_1+x_2m_2=a_2-a_1\)
那么\(exgcd\)可以求解最小的\(x_1\),然后就可以求得\(x=x_1m_1+a_1\)
这样子就可以同时满足这两个方程了,因为方程有多个,
所以我们把这两个方程合并,假设当前求出来的解是\(x'\)
那么我们就新加入一个方程\(x\equiv x'(mod\ lcm(m_1,m_2))\)就好了。
中国剩余定理 CRT的更多相关文章
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 中国剩余定理(CRT)及其扩展(EXCRT)详解
问题背景 孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...
- 扩展GCD 中国剩余定理(CRT) 乘法逆元模版
extend_gcd: 已知 a,b (a>=0,b>=0) 求一组解 (x,y) 使得 (x,y)满足 gcd(a,b) = ax+by 以下代码中d = gcd(a,b).顺便求出gc ...
- 中国剩余定理(CRT)及其拓展(ExCRT)
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...
- 学习笔记:中国剩余定理(CRT)
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹 ...
- CRT&EXCRT 中国剩余定理及其扩展
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...
- 扩展中国剩余定理(扩展CRT)详解
今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面) 中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$. 正常的$CRT$ ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- 【CRT】中国剩余定理简介
中国剩余定理(CRT) 中国剩余定理出自中国的某本古书,似乎是孙子兵法?(雾 其中有这样一个问题: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 即,对于这样一个方程组: \[ ...
随机推荐
- 解决nginx配置负载均衡时invalid host in upstream报错
当前平台: windows nginx版本: 1.11.5 前言: 在配置负载均衡时,同时也需要设置反向代理,当修改了nginx.conf时,发现nginx服务无法开启. 1. 打开"ngi ...
- win10系统下安装MySQLdb和pymysql
(1)使用的是Python3.6,想要使用MySQLdb, 需要先在https://www.lfd.uci.edu/~gohlke/pythonlibs/#mysqlclient中下载相应版本的包 ...
- 【原】Java学习笔记023 - 字符串缓冲区_正则表达式
package cn.temptation; import java.util.Arrays; public class Sample01 { public static void main(Stri ...
- Linux IO 模型
Linux 中主要有五种IO模式:阻塞IO, 非阻塞IO, IO 多路复用,信号驱动IO和异步IO; 如果从同步非同步,阻塞非阻塞角度来看,又可以分为:同步阻塞IO, 同步非阻塞IO,异步阻塞IO和异 ...
- git如何设置ssh密钥
git设置ssh密钥 目前git支持https和git两种传输协议,github分享链接时会有两种协议可选: 1.Clone with SSH 2.Clone with HTTPS git在使用htt ...
- Python爬虫【解析库之beautifulsoup】
解析库的安装 pip3 install beautifulsoup4 初始化 BeautifulSoup(str,"解析库") from bs4 import BeautifulS ...
- 使用opencv进行简单的手势检测[by Python]
代码参考于:https://github.com/rainyear/lolita/issues/8 简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB ...
- day4-python基础-数据类型
今日份小技巧 a =3 b=4, 最快将a和b值替换的方法为 a,b =b,a 今日内容 1. 字典 2. 集合 3.hash 4.基本数据类型总结 5.循环之for循环 6.range的使用 7.深 ...
- yum工作原理
yum工作原理 yum是一个RPM包的前端管理工具,在rpm包的依赖关系已经被建成数据库的前提下它能够实现自动查找相互依赖的人rpm包,并从repository中下载互相依赖的rpm包到本地. YUM ...
- Arduino内部网页代理,网页穿透,公网访问Arduino内部网页
#include <ESP8266WiFi.h> const char* id = "id"; //http://www.mcunode.com/proxy/ ...