题解 AT2390 【Games on DAG】
题目大意
给出一个n个点m条边的DAG,记为G。
可以删掉若干条边成为G′,显然有 2m 种不同的G′。
连边保证:若有 (xi →yi) 边,则 xi < yi 。
初始点1和点2有一个标记,Alice和Bob玩游戏,每次可以将任意一个标记沿边移动。
不能移动#者输,求这 2m 张图有多少先手必胜。
对 109 + 7取模。
思路
这题的1和2两个点显然是可以互相独立的
所以可以分开考虑,当做两个不同的子游戏
根据sg定理可以知道当sg[ 1 ]与sg[ 2 ]不同时先手必胜
但是发现直接算不同的情况并不好做
正难则反
因为所有的情况的方案数显然地可以知道有2m种
我们就可以考虑sg[ 1 ]与sg[ 2 ]相同时的方案数
总方案数减去相同的方案数即可得出必胜的方案数
呢么 相等的情况该怎么做
发现n很小 最大只有15
可以考虑状压枚举dp和保存状态
在枚举状态时枚举的是是否考虑这个点
因为要求sg[ 1 ]=sg[ 2 ] 所以不符合的都直接判掉
对于每种枚举到的总点集
我们可以分成sg值为0和非0两部分
设当前枚举到的总点集为s
分得的 sg非零的点集为t,sg为0的点集为u也就是s-t(状压里面就是^)
当前点集的符合要求的方案数为dp[ s ]
根据sg定理可知在符合题目给出的图下(连边就是转移状态)
1.u的点不能之间互相连边
2.t中的每个点至少向u连一条边
3.u中的点随便向t连边
4.t中的点互相连接有dp[ t ]种
可能对于第4点会有疑问 为什么呢
可以这么理解
我们从要点集t的方案推出它对于点集s的贡献
转移的实质是这种方案在原来的点集t上加了点集u
而所有的点集t上的点都要向点集u至少连一条边
点集t原来的终点都接在点集u上 终点改到了u上
这样就相当于点集t上所有的点的sg值都加1
而要使方案合法 点集t上的点相对之间的关系都不变
所以内部连接的方案数就是dp[ t ]
最后再总结下来
设s的每种分两部分的情况数为ans,每种情况刚开始ans=1,2^{x}2x为cf[ x ]
1.初始状态--dp[ 0 ]=1
2.转移方程--dp[ s ]+=dp[ t ]*ans
注.上面这条式子的i是指第几个点不是1左移i位 而代码中写的是左移多少位
剩下来具体的过程还是看代码
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define C getchar()-48
inline ll read()
{
ll s=,r=;
char c=C;
for(;c<||c>;c=C) if(c==-) r=-;
for(;c>=&&c<=;c=C) s=(s<<)+(s<<)+c;
return s*r;
}
#define find __builtin_popcount
//这个函数是找一个数的2进制中有几个1
const int N=,M=<<,p=1e9+;
int n,m;
int g[N],dp[M],cf[M];
inline int add(int x,int y)//算两数相加模p意义下的值
{
return ((x+=y)>p)?x-p:x;
}
int main()
{
n=read(),m=read();
dp[]=cf[]=;//初始状态
for(int i=;i<=m;i++) cf[i]=(cf[i-]<<)%p;//预处理2的x次方
for(int i=;i<=m;i++){int x=read()-,y=read()-;g[x]|=(<<y);}//2进制存x能到达的边
for(int s=,sed=<<n;s<sed;s++) if((s&)==(s>>&))//枚举s 因为1和2的点的状态相同所以直接判掉 下面同理
for(int u=s;u;u=u-&s) if((u&)==(u>>&))//枚举u
{
int ans=;
for(int i=;i<n;i++) if(s>>i&)//枚举被选到点
{
if(u>>i&) ans=1ll*ans*cf[find(g[i]&(s^u))]%p;//假如为点集u的点
else ans=1ll*ans*(cf[find(g[i]&u)]-)%p;//假如为点集t的点
}
dp[s]=add(dp[s],1ll*dp[s^u]*ans%p);//转移
}
cout<<(cf[m]-dp[(<<n)-]+p)%p;
return ;
}
题解 AT2390 【Games on DAG】的更多相关文章
- AT2390 Games on DAG
AT2390 Games on DAG 题意 \(1,2\) 号点各一个石头,每次沿边移动一个石头,不能动者输.求所有连边子集中先手胜的情况. 思路 发现对于两个石头的 SG 函数是独立的,输者两个石 ...
- AGC 016 F - Games on DAG(状压dp)
题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...
- AT2390-[AGC016F]Games on DAG【状压dp,SG函数】
正题 题目链接:https://www.luogu.com.cn/problem/AT2390 解题思路 \(n\)个点的\(DAG\),\(m\)条边可有可无,\(1\)和\(2\)上有石头.求有多 ...
- Atcoder Grand Contest 016 F - Games on DAG(状压 dp)
洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...
- AtCoder Grand Contest 016 F - Games on DAG
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f 题目大意: 给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\) ...
- Solution -「AGC 016F」Games on DAG
\(\mathcal{Description}\) Link. 给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...
- AGC016题解
呼我竟然真的去刷了016QwQ[本来以为就是个flag的233] 感觉AGC题目写起来都不是很麻烦但是确实动脑子qvq[比较适合训练我这种没脑子选手] 先扔个传送门:点我 A.Shrinking 题意 ...
- DP及其优化
常见DP模型及其构造 序列DP ARC074 RGB Sequence 题意 给你一个长度为 \(n\) 的序列和 \(m\) 组约束条件,每组条件形如 \(l_i,r_i,x_i\),表示序列上的 ...
- ATcoder Grand Contest总结
最前面: AT的题都很有思维难度,总结一下一些AT的常规操作 1.对于有操作的题目,如果正面推不行的话考虑倒推,将操作转化,寻找更好的性质 2.模型转化,看到某一种的计算的式子,需要考虑有没有更简化的 ...
随机推荐
- 通过Excel文件快速创建页面和数据表
在设计一个软件系统,构建过程:需求->数据表->系统开发.实际情况是需求(数据)很多来源于已经存在的文件中,客户会要求把这些数据“电子化”,这就给需求分析产生了很大的工作量: 分析这些原始 ...
- electron入坑指南
electron入坑指南 简介 electron 实际集成chrome浏览器和node环境, 运行你写的网页 app 基本目录结构 index.html 名称可以不是index, 这个文件与普通网页的 ...
- SQLServer之修改标量值函数
修改标量值函数注意事项 更改先前通过执行 CREATE FUNCTION 语句创建的现有 Transact-SQL 或 CLR 函数,但不更改权限,也不影响任何相关的函数.存储过程或触发器. 不能用 ...
- C#基础第七天
1.ref参数ref参数侧重于将一个变量以参数的形式带到一个方法中进行改变,改变完成后,再讲改变后的值带出来.在使用ref参数的时候需要注意:ref参数在方法外必须为其赋值. 2.方法的重载方法的重载 ...
- SQLServer之修改存储过程
修改存储过程注意事项 只能修改先前在 SQL Server 中通过执行 CREATE PROCEDURE 语句创建的过程. Transact-SQL 存储过程修改为 CLR 存储过程,反之亦然. AL ...
- UGUI合批原理笔记
可以通过Frame debugger查看每个drawcall绘制了哪些东西 UGUI源码下载地址:https://bitbucket.org/Unity-Technologies/ui/downloa ...
- Oracle导入、导出数据库dmp文件
版本 1.实例数据完全导出 即导出指定实例下的所有数据 exp username/password@192.168.234.73/orcl file=d:/daochu/test.dmp full=y ...
- 周一01.3Python多版本共存&pip环境变量设置
python多版本共存 1.分别安装Python2.7(手动添加环境变量)与Python3.6 2.分别进入Py2与Py3文件夹中,复制python.exe,重命名为python2.exe和pytho ...
- (一)走进Metasploit渗透测试框架
渗透测试的流程 渗透测试是一种有目的性的,针对目标机构计算机系统安全的检测评估方法,渗透测试的主要目的是改善目标机构的安全性.渗透测试各个阶段的基本工作: 1.前期交互阶段 在这个阶段,渗透测试工程师 ...
- 虚拟机硬盘vmdk压缩瘦身并挂载到VirtualBox
这个问题其实困扰了挺久的,一直没闲情去解决,网上搜索过很多压缩方法感觉都太麻烦太复杂,因最近在windows上搞docker就一并解决了. 压缩vmdk 首先下载DiskGenius,这工具很牛X,相 ...