题目大意

给出一个n个点m条边的DAG,记为G。

可以删掉若干条边成为G′,显然有 2m 种不同的G′。

连边保证:若有 (xi →yi​) 边,则 xi​ < yi 。

初始点1和点2有一个标记,Alice和Bob玩游戏,每次可以将任意一个标记沿边移动。

不能移动#者输,求这 2m 张图有多少先手必胜。

对 109 + 7取模。


思路

这题的1和2两个点显然是可以互相独立的

所以可以分开考虑,当做两个不同的子游戏

根据sg定理可以知道当sg[ 1 ]与sg[ 2 ]不同时先手必胜

但是发现直接算不同的情况并不好做

正难则反

因为所有的情况的方案数显然地可以知道有2m

我们就可以考虑sg[ 1 ]与sg[ 2 ]相同时的方案数

总方案数减去相同的方案数即可得出必胜的方案数

呢么 相等的情况该怎么做

发现n很小 最大只有15

可以考虑状压枚举dp和保存状态

在枚举状态时枚举的是是否考虑这个点

因为要求sg[ 1 ]=sg[ 2 ] 所以不符合的都直接判掉

对于每种枚举到的总点集

我们可以分成sg值为0和非0两部分

设当前枚举到的总点集为s

分得的 sg非零的点集为t,sg为0的点集为u也就是s-t(状压里面就是^)

当前点集的符合要求的方案数为dp[ s ]

根据sg定理可知在符合题目给出的图下(连边就是转移状态)

1.u的点不能之间互相连边

2.t中的每个点至少向u连一条边

3.u中的点随便向t连边

4.t中的点互相连接有dp[ t ]种

可能对于第4点会有疑问 为什么呢

可以这么理解

我们从要点集t的方案推出它对于点集s的贡献

转移的实质是这种方案在原来的点集t上加了点集u

而所有的点集t上的点都要向点集u至少连一条边

点集t原来的终点都接在点集u上 终点改到了u上

这样就相当于点集t上所有的点的sg值都加1

而要使方案合法 点集t上的点相对之间的关系都不变

所以内部连接的方案数就是dp[ t ]

最后再总结下来

设s的每种分两部分的情况数为ans,每种情况刚开始ans=1,2^{x}2x为cf[ x ]

1.初始状态--dp[ 0 ]=1

2.转移方程--dp[ s ]+=dp[ t ]*ans

注.上面这条式子的i是指第几个点不是1左移i位 而代码中写的是左移多少位

剩下来具体的过程还是看代码


代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define C getchar()-48
inline ll read()
{
ll s=,r=;
char c=C;
for(;c<||c>;c=C) if(c==-) r=-;
for(;c>=&&c<=;c=C) s=(s<<)+(s<<)+c;
return s*r;
}
#define find __builtin_popcount
//这个函数是找一个数的2进制中有几个1
const int N=,M=<<,p=1e9+;
int n,m;
int g[N],dp[M],cf[M];
inline int add(int x,int y)//算两数相加模p意义下的值
{
return ((x+=y)>p)?x-p:x;
}
int main()
{
n=read(),m=read();
dp[]=cf[]=;//初始状态
for(int i=;i<=m;i++) cf[i]=(cf[i-]<<)%p;//预处理2的x次方
for(int i=;i<=m;i++){int x=read()-,y=read()-;g[x]|=(<<y);}//2进制存x能到达的边
for(int s=,sed=<<n;s<sed;s++) if((s&)==(s>>&))//枚举s 因为1和2的点的状态相同所以直接判掉 下面同理
for(int u=s;u;u=u-&s) if((u&)==(u>>&))//枚举u
{
int ans=;
for(int i=;i<n;i++) if(s>>i&)//枚举被选到点
{
if(u>>i&) ans=1ll*ans*cf[find(g[i]&(s^u))]%p;//假如为点集u的点
else ans=1ll*ans*(cf[find(g[i]&u)]-)%p;//假如为点集t的点
}
dp[s]=add(dp[s],1ll*dp[s^u]*ans%p);//转移
}
cout<<(cf[m]-dp[(<<n)-]+p)%p;
return ;
}

题解 AT2390 【Games on DAG】的更多相关文章

  1. AT2390 Games on DAG

    AT2390 Games on DAG 题意 \(1,2\) 号点各一个石头,每次沿边移动一个石头,不能动者输.求所有连边子集中先手胜的情况. 思路 发现对于两个石头的 SG 函数是独立的,输者两个石 ...

  2. AGC 016 F - Games on DAG(状压dp)

    题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...

  3. AT2390-[AGC016F]Games on DAG【状压dp,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2390 解题思路 \(n\)个点的\(DAG\),\(m\)条边可有可无,\(1\)和\(2\)上有石头.求有多 ...

  4. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  5. AtCoder Grand Contest 016 F - Games on DAG

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f 题目大意: 给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\) ...

  6. Solution -「AGC 016F」Games on DAG

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...

  7. AGC016题解

    呼我竟然真的去刷了016QwQ[本来以为就是个flag的233] 感觉AGC题目写起来都不是很麻烦但是确实动脑子qvq[比较适合训练我这种没脑子选手] 先扔个传送门:点我 A.Shrinking 题意 ...

  8. DP及其优化

    常见DP模型及其构造 序列DP ARC074 RGB Sequence 题意 给你一个长度为 \(n\) 的序列和 \(m\) 组约束条件,每组条件形如 \(l_i,r_i,x_i\),表示序列上的 ...

  9. ATcoder Grand Contest总结

    最前面: AT的题都很有思维难度,总结一下一些AT的常规操作 1.对于有操作的题目,如果正面推不行的话考虑倒推,将操作转化,寻找更好的性质 2.模型转化,看到某一种的计算的式子,需要考虑有没有更简化的 ...

随机推荐

  1. iOS-UIView指定圆角设置

    圆角设置可以指定左上.左下.右上.右下角:单个指定或多个指定. ///设置圆角[左上.右上角] - (void)setCircular{ UIBezierPath *maskPath = [UIBez ...

  2. 集成Android人脸识别demo分享

    本应用来源于虹软人工智能开放平台,人脸识别技术工程如何使用? 1.下载代码 git clone https://github.com/andyxm/ArcFaceDemo.git 2.下载虹软人脸识别 ...

  3. spring学习总结——高级装配学习四(运行时:值注入、spring表达式)

    前言: 当讨论依赖注入的时候,我们通常所讨论的是将一个bean引用注入到另一个bean的属性或构造器参数中.bean装配的另外一个方面指的是将一个值注入到bean的属性或者构造器参数中.在没有学习使用 ...

  4. C# 一般处理程序ashx接收服务端post过来json数据

    这个和前端js的接收方式有点不一样,前端接收用request.form["xxx"]即可

  5. Tomcat开启SSL协议支持

    一.生成keyStore 要使用ssl connector,必须先创建一个keystore.他包含了服务器中被客户端用于验证服务器的数字证书.一旦客户端接受了这个证书,客户端就可以使用public k ...

  6. 通过shell命令往android中写入配置

    C:\Users>adb shell setprop "persist.sys.btylevel" 100 C:\Users>adb shell getprop &qu ...

  7. Windows Service 学习系列(一):建立简单的Windows service

    参考:https://www.cnblogs.com/cncc/p/7170951.html 一.开发环境 操作系统:Windows 7 X64 开发环境:VS2017 编程语言:C# .NET版本: ...

  8. Kafka设计解析(七)- Kafka Stream

    本文介绍了Kafka Stream的背景,如Kafka Stream是什么,什么是流式计算,以及为什么要有Kafka Stream.接着介绍了Kafka Stream的整体架构,并行模型,状态存储,以 ...

  9. ElasticSearch(七):Java操作elasticsearch基于smartcn中文分词查询

    package com.gxy.ESChap01; import java.net.InetAddress; import org.elasticsearch.action.search.Search ...

  10. 文本分类实战(七)—— Adversarial LSTM模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...