题目大意

给出一个n个点m条边的DAG,记为G。

可以删掉若干条边成为G′,显然有 2m 种不同的G′。

连边保证:若有 (xi →yi​) 边,则 xi​ < yi 。

初始点1和点2有一个标记,Alice和Bob玩游戏,每次可以将任意一个标记沿边移动。

不能移动#者输,求这 2m 张图有多少先手必胜。

对 109 + 7取模。


思路

这题的1和2两个点显然是可以互相独立的

所以可以分开考虑,当做两个不同的子游戏

根据sg定理可以知道当sg[ 1 ]与sg[ 2 ]不同时先手必胜

但是发现直接算不同的情况并不好做

正难则反

因为所有的情况的方案数显然地可以知道有2m

我们就可以考虑sg[ 1 ]与sg[ 2 ]相同时的方案数

总方案数减去相同的方案数即可得出必胜的方案数

呢么 相等的情况该怎么做

发现n很小 最大只有15

可以考虑状压枚举dp和保存状态

在枚举状态时枚举的是是否考虑这个点

因为要求sg[ 1 ]=sg[ 2 ] 所以不符合的都直接判掉

对于每种枚举到的总点集

我们可以分成sg值为0和非0两部分

设当前枚举到的总点集为s

分得的 sg非零的点集为t,sg为0的点集为u也就是s-t(状压里面就是^)

当前点集的符合要求的方案数为dp[ s ]

根据sg定理可知在符合题目给出的图下(连边就是转移状态)

1.u的点不能之间互相连边

2.t中的每个点至少向u连一条边

3.u中的点随便向t连边

4.t中的点互相连接有dp[ t ]种

可能对于第4点会有疑问 为什么呢

可以这么理解

我们从要点集t的方案推出它对于点集s的贡献

转移的实质是这种方案在原来的点集t上加了点集u

而所有的点集t上的点都要向点集u至少连一条边

点集t原来的终点都接在点集u上 终点改到了u上

这样就相当于点集t上所有的点的sg值都加1

而要使方案合法 点集t上的点相对之间的关系都不变

所以内部连接的方案数就是dp[ t ]

最后再总结下来

设s的每种分两部分的情况数为ans,每种情况刚开始ans=1,2^{x}2x为cf[ x ]

1.初始状态--dp[ 0 ]=1

2.转移方程--dp[ s ]+=dp[ t ]*ans

注.上面这条式子的i是指第几个点不是1左移i位 而代码中写的是左移多少位

剩下来具体的过程还是看代码


代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define C getchar()-48
inline ll read()
{
ll s=,r=;
char c=C;
for(;c<||c>;c=C) if(c==-) r=-;
for(;c>=&&c<=;c=C) s=(s<<)+(s<<)+c;
return s*r;
}
#define find __builtin_popcount
//这个函数是找一个数的2进制中有几个1
const int N=,M=<<,p=1e9+;
int n,m;
int g[N],dp[M],cf[M];
inline int add(int x,int y)//算两数相加模p意义下的值
{
return ((x+=y)>p)?x-p:x;
}
int main()
{
n=read(),m=read();
dp[]=cf[]=;//初始状态
for(int i=;i<=m;i++) cf[i]=(cf[i-]<<)%p;//预处理2的x次方
for(int i=;i<=m;i++){int x=read()-,y=read()-;g[x]|=(<<y);}//2进制存x能到达的边
for(int s=,sed=<<n;s<sed;s++) if((s&)==(s>>&))//枚举s 因为1和2的点的状态相同所以直接判掉 下面同理
for(int u=s;u;u=u-&s) if((u&)==(u>>&))//枚举u
{
int ans=;
for(int i=;i<n;i++) if(s>>i&)//枚举被选到点
{
if(u>>i&) ans=1ll*ans*cf[find(g[i]&(s^u))]%p;//假如为点集u的点
else ans=1ll*ans*(cf[find(g[i]&u)]-)%p;//假如为点集t的点
}
dp[s]=add(dp[s],1ll*dp[s^u]*ans%p);//转移
}
cout<<(cf[m]-dp[(<<n)-]+p)%p;
return ;
}

题解 AT2390 【Games on DAG】的更多相关文章

  1. AT2390 Games on DAG

    AT2390 Games on DAG 题意 \(1,2\) 号点各一个石头,每次沿边移动一个石头,不能动者输.求所有连边子集中先手胜的情况. 思路 发现对于两个石头的 SG 函数是独立的,输者两个石 ...

  2. AGC 016 F - Games on DAG(状压dp)

    题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...

  3. AT2390-[AGC016F]Games on DAG【状压dp,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2390 解题思路 \(n\)个点的\(DAG\),\(m\)条边可有可无,\(1\)和\(2\)上有石头.求有多 ...

  4. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  5. AtCoder Grand Contest 016 F - Games on DAG

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f 题目大意: 给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\) ...

  6. Solution -「AGC 016F」Games on DAG

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...

  7. AGC016题解

    呼我竟然真的去刷了016QwQ[本来以为就是个flag的233] 感觉AGC题目写起来都不是很麻烦但是确实动脑子qvq[比较适合训练我这种没脑子选手] 先扔个传送门:点我 A.Shrinking 题意 ...

  8. DP及其优化

    常见DP模型及其构造 序列DP ARC074 RGB Sequence 题意 给你一个长度为 \(n\) 的序列和 \(m\) 组约束条件,每组条件形如 \(l_i,r_i,x_i\),表示序列上的 ...

  9. ATcoder Grand Contest总结

    最前面: AT的题都很有思维难度,总结一下一些AT的常规操作 1.对于有操作的题目,如果正面推不行的话考虑倒推,将操作转化,寻找更好的性质 2.模型转化,看到某一种的计算的式子,需要考虑有没有更简化的 ...

随机推荐

  1. Mysql 数据库常用配置命令

    1.查看mysql数据库默认编码: mysql> show variables like "character%"; +--------------------------+ ...

  2. Android: 在native中访问assets全解析

    本文总结在Android Native C++开发中访问APK中的assets资源的方法 在CMake中添加相关NDK LIB的 依赖 因为我们接下来用到的一些函数实现在NDK库libandroid. ...

  3. Java新知识系列 八

    什么是死锁,死锁的原因和必要条件:       []什么是死锁,死锁的原因和必要条件: 死锁:死锁的原因在于进程在等待其它进程占有的某些资源,而自身的资源又被其它进程等待着,造成了死循环. 出现死锁的 ...

  4. 算法: 整数中1出现的次数(从1到n整数中1出现的次数)

    问题: 整数中1出现的次数(从1到n整数中1出现的次数) 问题:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数? 为此他特别数了一下1~13中包含1的数字有1.10.11 ...

  5. Git:七、标签(tag)

    1.创建标签:切换到需要打标签的分支 1)直接打在最新commit的版本上 git tag <tagname> 2)找到commit id git tag <tagname> ...

  6. dede 采集文章内容中图片不显示的问题

    找到include文件下面的dedecollection.class.php 找到DownMedias这个方法,大概在870行 //下载标记里的图片和flash $okurl = $this-> ...

  7. Elasticsearch源码分析 - 源码构建

    原文地址:https://mp.weixin.qq.com/s?__biz=MzU2Njg5Nzk0NQ==&mid=2247483694&idx=1&sn=bd03afe5a ...

  8. C#中的值类型和引用类型,深拷贝,浅拷贝

    from https://www.jianshu.com/p/2d27b06e253f 一.C#中的值类型和引用类型 概念 值类型直接存储其值. 引用类型存储对值的引用. 说起来有些拗口,其本质是Va ...

  9. Linux 下 C# Mono P/Invoke .so 动态链接库。

    linux 的动态链接库 libgw.so 的函数 如下: struct lbt_chan { uint32_t freq_hz; uint16_t scan_time_us; }; struct l ...

  10. centos7搭建ftp

    1.检查安装vsftpd软件 rpm –qa |grep vsftpd 这里显示已经安装了,我们来卸载它重新安装 卸载vsftpd命令 rpm –e 文件名 显示卸载完成 安装vsftpd命令 Yum ...