已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值.


解:令$m=\dfrac{1}{a},n=\dfrac{1}{b}$,则$m+n=\dfrac{2}{3}$
$\dfrac{1}{a-1}+\dfrac{4}{b-1}=\dfrac{m}{1-m}+\dfrac{4n}{1-n}=\dfrac{1}{1-m}+\dfrac{4}{1-n}-5\ge\dfrac{(1+2)^2}{2-m-n}-5=\dfrac{7}{4}$

练习1:
已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=2$,求$\dfrac{1}{a+1}+\dfrac{4}{b+1}$的最大值.

答案:$\dfrac{11}{4}$

练习2:

已知$a,b>0,a+2b=1$,则$\dfrac{1}{3a+4b}+\dfrac{1}{a+3b}$的最小值为_____

解答:令$3a+4b=x,a+3b=y$则$a=\dfrac{3x-4y}{5},b=\dfrac{3y-x}{5},x+2y=5$

故$\dfrac{1}{3a+4b}+\dfrac{1}{a+3b}=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}(\dfrac{1}{x}+\dfrac{1}{y})(x+2y)\ge\dfrac{3+2\sqrt{2}}{5}$

或者待定系数后利用柯西不等式得

$\dfrac{1}{3a+4b}+\dfrac{1}{a+3b}=\dfrac{1}{3a+4b}+\dfrac{2}{2(a+3b)}\ge\dfrac{(1+\sqrt{2})^2}{5a+10b}=\dfrac{3+2\sqrt{2}}{5}$

练习3:

$\dfrac{1}{(2a+b)b}+\dfrac{2}{(2b+a)a}=1$求$ab$的最大值

答案:2-$\dfrac{2\sqrt{2}}{3}$

提示:条件两边同乘$ab$齐次化后分母双代换.

MT【318】分式不等式双代换的更多相关文章

  1. 3-18 关于namespace,双冒号::的用法; SelfYield.

    关于namespace,双冒号::的用法. 防止引用多个模块在一个文件/类中,有重名的对象.::可以调用类的类方法,和常量. class Foo   BAR = "hello"   ...

  2. MT【324】增量代换

    实数$a,b,c$满足$a^2+b^2+c^2=1$求$f=\min\{(a-b)^2,(b-c)^2,(c-a)^2\}$的最大值 分析:由对称性不妨设$c\ge b\ge a$,令$b-a=s,c ...

  3. MT【298】双参数非齐次

    若函数$f(x)=x^2+(\dfrac{1}{3}+a)x+b$在$[-1,1]$上有零点,则$a^2-3b$的最小值为_____ 分析:设零点为$x_0$,则$b=-x^2_0-(\dfrac{1 ...

  4. MT【48】分式连加形式下求不等式解集的区间长度

    ] 评:此题有分析的味道在里面,用到了n次多项式的韦达定理,用到了零点存在定理以及代数基本定理:n次多项式在复数域上有n个根.

  5. 双积分式(A/D)转换器电路结构及工作原理

    1.转换方式 V-T型间接转换ADC. 2.  电路结构 图1是这种转换器的原理电路,它由积分器(由集成运放A组成).过零比较器(C).时钟脉冲控制门(G)和计数器(ff0-ffn)等几部分组成 图1 ...

  6. MT【230】一道代数不等式

    设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+ ...

  7. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  8. MT【33】证明琴生不等式

    解答:这里数学归纳法证明时指出关键的变形. 评:撇开琴生不等式自身的应用和意义外,单单就这个证明也是一道非常不错的练习数学归纳法的经典题目.

  9. MT【25】切线不等式原理及例题

    评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.

随机推荐

  1. Ansible第一篇:介绍及安装

    Ansible介绍 Ansible是个什么东西呢?官方的title是"Ansible is Simple IT Automation"--简单的自动化IT工具.ansible基于P ...

  2. input输入限制,只允许输入数字和“.”,长度不得超过20

    <input style="margin-top: 10px;width: 100%;text-align:center;" id="removeArea" ...

  3. SQL Server 数据库部分常用语句小结(二)

    9. 查询备份还原数据库的进度. select command ,percent_complete ,est_time_to_go=convert(varchar,(estimated_complet ...

  4. 安装MySQL8.0 遇到的3个小错误

    过去公司都是用的5.7 系列的MySQL,随着8.0的发版,也想试着升级一下.遇到了两个小错误,记录在此. 路径设置: 安装包路径:/data/mysql80/ 数据路径: /data/mysql/ ...

  5. CGI 、FastCGI、PHP-CGI、PHP-FPM 定义以及与nginx的应用关系

    CGI common gateway interface,简称cgi,简而言之就是一个接口,一种协议.它的作用就是帮助服务器与语言通信. 这里以nginx和php为例,因为nginx和php的语言不通 ...

  6. Ubuntu17.04 sudo apt-get update升级错误

    最近在折腾Ubuntu,安装的是17.04版本的.想安装PHP7.X最新版本,但是要先升级.利用sudo apt-get update命名后,出现了以下报错: 忽略:1 http://cn.archi ...

  7. Maven构建项目出现No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK?

    No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK? 你应该 ...

  8. Extjs 判断对象是非为null或者为空字符串

    Ext.isEmpty(str,[allowEmptyString]) 如果str为 null undefined a zero-length array a zero-length string ( ...

  9. WPF中自定义标题栏时窗体最大化处理之WindowChrome

    注意: 本文方法基础是WindowChrome,而WindowChrome在.NET Framework 4.5之后才集成发布的.见:WindowChrome Class 在.NET Framewor ...

  10. Nginx Mac笔记

    安装 brew install nginx 可能出现问题: Error: /usr/local is not writable. You should change the ownership and ...