CF55D Beautiful numbers
题意
定义一个数字\(x\)是\(beautiful\ number\)当且仅当\(x\)可以被其十进制表示下所有非\(0\)位置的数整除。
例如\(24\)是一个\(beautiful\ number\),因为他可以被\(2\)和\(4\)整除。
而\(28\)不是一个\(beautiful\ number\),因为他不能被\(8\)整除
给出两个数字\(L,R\; (1 \le L\le R \le 10^{18})\)
求出区间\([L,R]\)内有多少\(beautiful\ number\)
思路
首先显然的数位\(dp\)
先不考虑空间和时间问题
要让一个数字\(x\)整除所有数位上的数字。其实也就是要整除这些数字的最小公倍数\((lcm)\)。
用\(f[i][j][k]\)表示当前到了第\(i\)位,当前数字为\(j\;\) (先不管能否空间是否足够)。所选数字的\(lcm\)为\(k\)的方案数。
搜到最后看一下\(lcm\)是否整除\(j\)即可。
然后考虑空间问题。
在\(f[i][j][k]\)中,\(i\)是\(18\)左右,\(j\)是\(10^{18}\),\(k\)最大是\(2520\)(\(2520\)是\(1\) ~ \(9\)的\(lcm\))
考虑优化一下\(j\)这一维。
显然所有可能的\(lcm\)都是\(2520\)的因数。
而比较显然的
\]
所以我们可以把\(j\)那一维的数以\(2520\)为模数\(hash\)一下。
然后优化\(k\)那一维。
枚举一下可以发现。\(1\)~\(9\)的所有可能组合中。\(lcm\)的种类其实只有\(50\)种左右。所以就可以把最后一维压成\(50\)左右
然后就可以愉快的数位\(dp\)啦!
代码
/*
* @Author: wxyww
* @Date: 2019-03-17 08:30:41
* @Last Modified time: 2019-03-17 19:36:46
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int LCM = 2520;
#define int ll
ll read() {
ll x = 0, f = 1; char c = getchar();
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
ll L, R;
int dy[100], pk[LCM + 100];
int get_lcm(int x, int y) {
if (!y) return x;
return x * y / __gcd(x, y);
}
namespace BF2 {
int pos, f[20][3000][60], a[20];
ll dp(ll p, ll now, ll lcm, int lim) {
if (!p) return now % dy[lcm] == 0;
if (f[p][now][lcm] != -1 && !lim) return f[p][now][lcm];
int up = 9;
if (lim) up = a[p];
int tmp = 0;
for (int i = 0; i <= up; ++i)
tmp += dp(p - 1, ((now * 10 + i) % LCM), pk[get_lcm(dy[lcm], i)], lim & i == up);
if (!lim) f[p][now][lcm] = tmp;
return tmp;
}
ll solve(ll x) {
pos = 0;
while (x) {
a[++pos] = x % 10; x /= 10;
}
return dp(pos, 0, 1, 1);
}
void main() {
cout << solve(R) - solve(L - 1) << endl;
}
}
signed main() {
int T = read();
memset(BF2::f, -1, sizeof(BF2::f));
int cnt = 0;
for (int i = 1; i <= LCM; ++i) {
if (LCM % i == 0) {
dy[++cnt] = i; pk[i] = cnt;
}
}
while (T--) {
L = read(), R = read();
BF2::main();
}
return 0;
}
CF55D Beautiful numbers的更多相关文章
- 洛谷 CF55D Beautiful numbers 解题报告
CF55D Beautiful numbers 题意 \(t(\le 10)\)次询问区间\([l,r](1\le l\le r\le 9\times 10^{18})\)中能被每一位上数整除的数的个 ...
- [暑假集训--数位dp]cf55D Beautiful numbers
Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer numb ...
- CF55D Beautiful numbers 题解
题目 Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer n ...
- cf55D. Beautiful numbers(数位dp)
题意 题目链接 Sol 看到这种题就不难想到是数位dp了. 一个很显然的性质是一个数若能整除所有位数上的数,则一定能整除他们的lcm. 根据这个条件我们不难看出我们只需要记录每个数对所有数的lcm(也 ...
- CF55D Beautiful numbers (数位dp)
题目链接 题解 一个数能被一些数整除,那么一定被这些数的\(lcm\)整除 那么我们容易想到根据\(lcm\)设状态 我们可以发现有用的\(lcm\)只有\(48\)个 那么按照一般的数位\(dp\) ...
- 【数位DP】CF55D Beautiful numbers
$dp[x][p][pp]$表示第x位,当前已有数字mod 2520(1~9数字的lcm)为p,当前各位数字的lcm为pp 观察到数组太大,考虑压缩,第三维lcm最多只有9个数字,打表发现最多只有48 ...
- 【CF55D】Beautiful numbers(动态规划)
[CF55D]Beautiful numbers(动态规划) 题面 洛谷 CF 题解 数位\(dp\) 如果当前数能够被它所有数位整除,意味着它能够被所有数位的\(lcm\)整除. 所以\(dp\)的 ...
- 【CF55D】Beautiful numbers
[CF55D]Beautiful numbers 题面 洛谷 题解 考虑到如果一个数整除所有数那么可以整除他们的\(lcm\),而如果数\(x\)满足\(x\bmod Lcm(1,2...,9)=r\ ...
- CodeForces 55D Beautiful numbers
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
随机推荐
- IntelliJ IDEA简介及简单操作
IntelliJ IDEA简介 IDEA 全称IntelliJ IDEA,是用于java语言开发的集成环境(也可用于其他语言),IntelliJ在业界被公认为最好的java开发工具之一 ...
- SQL Server -- 回忆笔记(四):case函数,索引,子查询,分页查询,视图,存储过程
SQL Server知识点回忆篇(四):case函数,索引,子查询,分页查询,视图,存储过程 1. CASE函数(相当于C#中的Switch) then '未成年人' else '成年人' end f ...
- Kafka 安装配置 windows 下
Kafka 安装配置 windows 下 标签(空格分隔): Kafka Kafka 内核部分需要安装jdk, zookeeper. 安装JDK 安装JDK就不需要讲解了,安装完配置下JAVA_HOM ...
- 能ping通虚拟机,但snmp报文 Destination unreachable(Host administratively prohibited
如题目,使用virtual box 虚拟机,虚拟机系统为centos6.5, 主机系统为win10 内外设置ip在同一网段后,互相能ping通,centos 系统开启snmp服务,此处说明以下, sn ...
- HybridStart混合应用开发框架
转自我的博客,原文地址:http://refined-x.com/2017/06/26/%E5%9F%BA%E4%BA%8EAPICloud%E7%9A%84%E6%B7%B7%E5%90%88%E5 ...
- gpio led学习
2.弄清楚寄存器,gpio等之间的关系,to thi tha 比如: https://www.ggdoc.com/bGludXggZ3Bpb_aTjeS9nA2/NmIzNDIyZGZmMTExZjE ...
- HBase Rowkey 设计指南
为什么Rowkey这么重要 RowKey 到底是什么 我们常说看一张 HBase 表设计的好不好,就看它的 RowKey 设计的好不好.可见 RowKey 在 HBase 中的地位.那么 RowKey ...
- Nginx解读内置非默认模块 ngx_http_stub_status_module
1 Background http://nginx.org/en/docs/http/ngx_http_stub_status_module.html ngx_http_stub_status_mod ...
- java常用问题排查工具
一:jstack找到最耗cpu的线程并定位代码 1.ps -ef|grep java 或者 jps -l 得到进程pid 2.找到该进程内最耗cpu的线程,我一般使用: top -Hp pid 3.c ...
- Python编码规范(PEP8)及奇技淫巧(不断更新)
https://blog.csdn.net/MrLevo520/article/details/69155636