代码参考于:https://github.com/rainyear/lolita/issues/8

简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB转换到HSV颜色空间下针对皮肤颜色进行二值化,得到mask:

def HSVBin(img):
hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV) lower_skin = np.array([100,50,0])
upper_skin = np.array([125,255,255]) mask = cv2.inRange(hsv,lower_skin,upper_skin)
return mask

其中:

cvtColor用于颜色空间转换。

inRange中,lower指图像中低于这个值,图像值会变成0;upper指图像中高于这个值,图像值会变成0,而在这之间的值变为255。

然后通过腐蚀与膨胀等形态学变化去除一些噪点,得到更完整的白色(皮肤)色块,最后找出色块的轮廓,并通过色块大小排除一些面积较小的噪点:

def getContours(img):
kernel = np.ones((5,5),np.uint8)
closed = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
closed = cv2.morphologyEx(closed,cv2.MORPH_CLOSE,kernel)
_,contours,h = cv2.findContours(closed,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
vaildContours = []
for cont in contours:
if cv2.contourArea(cont)>9000:
vaildContours.append(cv2.convexHull(cont))
return vaildContours

膨胀:dilate,进行膨胀操作时,将内核 B划过图像,将内核B覆盖区域的最大像素值提取,并代替锚点位置的像素,这一最大化操作会导致图像中的亮区开始“扩展”。

腐蚀:erode,将最小像素值提取原始图片里的一个像素(1或者0)只有在核下的所有像素都是1的时候才被认为是1.否则它就被腐蚀掉了(变成0)。根据核的大小来决定在边界附近的多少像素会被丢弃掉,所以前景物体的厚度或大小会缩小,或者说白色区域会减小。这个在移除小的白色噪点时很有用。

ones(shape[,dtype,order]) 依据一个给定的形状和类型返回一个新的元素全部为1的数组。

data type :uint8 -->range:0~255,一张图片的数据类型默认为unit8

开:腐蚀之后再膨胀的另一个名字。我们使用函数cv2.morphologyEx()。

闭:膨胀之后再腐蚀,在用来关闭前景对象里的小洞或小黑点很有用。

轮廓检测 cv2.findContours,接收参数为二值图。

def main():
cap = cv2.VideoCapture(0)
while(cap.isOpened()):
ret,img = cap.read()
skinMask = HSVBin(img)
contours = getContours(skinMask)
cv2.drawContours(img,contours,-1,(0,255,0),2)
cv2.imshow('capture',img)
k = cv2.waitKey(10)
if k == 27:
break

cv2.waitKey()--waitKey()函数的功能是不断刷新图像,频率时间为delay,单位为ms。返回值为当前键盘按键值。

完整代码如下:

import cv2
import numpy as np def main():
cap = cv2.VideoCapture(0)
while(cap.isOpened()):
ret,img = cap.read()
skinMask = HSVBin(img)
contours = getContours(skinMask)
cv2.drawContours(img,contours,-1,(0,255,0),2)
cv2.imshow('capture',img)
k = cv2.waitKey(10)
if k == 27:
break def getContours(img):
kernel = np.ones((5,5),np.uint8)
closed = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
closed = cv2.morphologyEx(closed,cv2.MORPH_CLOSE,kernel)
_,contours,h = cv2.findContours(closed,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
vaildContours = []
for cont in contours:
if cv2.contourArea(cont)>9000:
#x,y,w,h = cv2.boundingRect(cont)
#if h/w >0.75:
#filter face failed
vaildContours.append(cv2.convexHull(cont))
#rect = cv2.minAreaRect(cont)
#box = cv2.cv.BoxPoint(rect)
#vaildContours.append(np.int0(box))
return vaildContours def HSVBin(img):
hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV) lower_skin = np.array([100,50,0])
upper_skin = np.array([125,255,255]) mask = cv2.inRange(hsv,lower_skin,upper_skin)
#res = cv2.bitwise_and(img,img,mask=mask)
return mask if __name__ =='__main__':
main()

效果:

使用opencv进行简单的手势检测[by Python]的更多相关文章

  1. Python使用OpenCV实现简单的人脸检测

    文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+P ...

  2. Android 手势检测实战 打造支持缩放平移的图片预览效果(下)

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/39480503,本文出自:[张鸿洋的博客] 上一篇已经带大家实现了自由的放大缩小图 ...

  3. cvSmooth函数 和 OpenCV自带的人脸检测

    记录cvSmooth函数的用法和 OpenCV自带的人脸检测. (1)cvSmooth函数 void cvSmooth( const CvArr* src, CvArr* dst,int smooth ...

  4. 看完这篇还不会 GestureDetector 手势检测,我跪搓衣板!

    引言 在 android 开发过程中,我们经常需要对一些手势,如:单击.双击.长按.滑动.缩放等,进行监测.这时也就引出了手势监测的概念,所谓的手势监测,说白了就是对于 GestureDetector ...

  5. OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)

    PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...

  6. 9.3、Libgdx手势检测

    (官网:www.libgdx.cn) 触摸屏在输入的基础上增加了手势检测,比如两个手指实现缩放,单击或双击屏幕,长按屏幕等. Libgdx提供了GestureDetector来帮助你检测以下手势: t ...

  7. OpenCV 学习笔记 07 目标检测与识别

    目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV ...

  8. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  9. 用一个简单的例子来理解python高阶函数

    ============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如 ...

随机推荐

  1. SpringCloud Ribbon的分析

    Spring Cloud Ribbon主要用于客户端的负载均衡.最基本的用法便是使用RestTemplate进行动态的负载均衡.我们只需要加入如下的配置便能完成客户端的负载均衡. @Configura ...

  2. 【C#加深理解系列】(二)序列化

    什么是序列化 序列化,它又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.序列化就是把一个对象保存到一个文件或数据库字段中去,反序列化就是在适当的时候把这个文件再转化成原来的对象使用. ...

  3. ES6躬行记(16)——Set

    ES6引入了两种新的数据结构:Set和Map.Set是一组值的集合,其中值不能重复:Map(也叫字典)是一组键值对的集合,其中键不能重复.Set和Map都由哈希表(Hash Table)实现,并可按添 ...

  4. ASP.NET Core 2.1 : 十二.内置日志、使用Nlog将日志输出到文件

    应用离不开日志,虽然现在使用VS有强大的调试功能,开发过程中不复杂的情况懒得输出日志了(想起print和echo的有木有),但在一些复杂的过程中以及应用日常运行中的日志还是非常有用. ASP.NET ...

  5. Flask入门之完整项目搭建

    一.创建虚拟环境 1,新建虚拟环境 cmd中输入:mkvirtualenv 环境名 2,在虚拟环境安装项目运行所需要的基本模块 pip install flask==0.12.4 pip instal ...

  6. 第一册:lesson 101。

    原文: A card from Jimmy Read Jimmy's card to me please,Penny. I have just arrive in Scotland and I'm s ...

  7. EF三种编程方式的区别Database first ,Model first ,code first

    首先对于EF中先出现的datebase  first和model first两种编程方式,其的区别根据字面意思很容易能够理解. datebase  first就是代表数据库优先,那么前提就是先创建数据 ...

  8. JavaScript技巧(未完成)

    1.在js脚本语言中使用HTML语言中的< >号,但是在XHTML中却不能使用这类符号,可以将<号转换成&lt符号(XHTML比HTML跟严格),这种做法比较不好理解,可以用 ...

  9. Android Material Design控件使用(三)——CardView 卡片布局和SnackBar使用

    cardview 预览图 常用属性 属性名 说明 cardBackgroundColor 设置背景颜色 cardCornerRadius 设置圆角大小 cardElevation 设置z轴的阴影 ca ...

  10. es6 Symbol类型

    es6 新增了一个原始类型Symbol,代表独一无二的数据 javascript 原来有6中基本类型, Boolean ,String ,Object,Number, null , undefined ...