python 实现简单卷积网络框架
第一步定义卷积核类:
class Filter(object):
# 滤波器类 对卷积核进行初始化
def __init__(self,width,height,depth):
# initialize the filter parameter
self.weights=np.random.uniform(-1e-4,1e-4,(depth,height,width))
self.bias=0
self.weights_grad=np.zeros(self.weights.shape)
self.bias_grad=0
def get_weights(self):
return self.weights
def get_bias(self):
return self.bias
def update_weight(self,learning_rate):
self.weights-=self.weights_grad*learning_rate
self.bias-=self.bias_grad*learning_rate
定义卷积层
def conv(input_array,kernel_array,output_array,stride,bias):
channel_number=input_array.ndim
output_width=output_array.shape[1]
output_height=output_array.shape[0]
kernel_width=kernel_array.shape[-1]
kernel_height=kernel_array.shape[-2]
for i in range(output_height):
for j in range(output_width):
# get_patch 得到i,j位置对应的图像的块
output_array[i][j]=(get_patch(input_array,i,j,kernel_width,kernel_height,stride)*kernel_array).sum()+bias
定义padding 函数:根据扩展的大小进行0填充
def padding(input_array, zero_padding):
if zero_padding == 0:
return input_array
else:
if input_array.ndim == 3:
input_width = input_array.shape[2]
input_height = input_array.shape[1]
input_depth = input_array.shape[0]
padded_array = np.zeros((input_depth, input_height + 2 * zero_padding,
input_width + 2 * zero_padding))
padded_array[:, zero_padding:zero_padding + input_height,
zero_padding:zero_padding + input_width] = input_array elif input_array.ndim == 2:
input_width = input_array.shape[1]
input_height = input_array.shape[0]
padded_array = np.zeros((input_height + 2 * zero_padding, input_width + 2 * zero_padding))
padded_array[zero_padding:zero_padding + input_width,
zero_padding:zero_padding + input_height] = input_array
return padded_array
定义卷积类:
def calculate_output_size(input_size,filter_size,zero_padding,stride):
return (input_size-filter_size+2*zero_padding)/stride+1
class ConvLayer(object):
def __init__(self,input_width,input_height,channel_number,
filter_width,filter_height,filter_number,zero_padding,stride,
activator,learning_rate):
self.input_width=input_width
self.input_height=input_height
self.channel_number=channel_number
self.filter_width=filter_width
self.filter_height=filter_height
self.filter_number=filter_number
self.zero_padding=zero_padding
self.stride=stride
# 根据(f-w+2p)/2+1
self.outpu_width=ConvLayer.calculate_output_size(self.input_width,
filter_width,zero_padding,stride)
self.output_height=ConvLayer.calculate_output_size(self.input_height,
filter_height,zero_padding,
stride)
# 得到padding 后的图像
self.output_array=np.zeros(self.filter_number,self.output_width,self.output_height)
# the output of the convolution
# 初始化filters
self.filters=[]
# initialize filters
for i in range(filter_number):
self.filters.append(Filter(filter_width,filter_height,self.channel_number))
self.activator=activator
self.learning_rate=learning_rate
# 对 灵敏度图进行扩充
def expand_sentivity_map(self,sensitivity_array):
depth=sensitivity_array.shape[0]
expanded_width=(self.input_width-self.filter_width+2*self.zero_padding+1)
expanded_height=(self.input_height-self.filter_height+2*self.zero_padding+1)
expand_array=np.zeros((depth,expanded_height,expanded_width))
for i in range(self.output_height):
for j in range(self.output_width):
i_pos=i*self.stride
j_pos=j*self.stride
expand_array[:,i_pos,j_pos]=sensitivity_array[:,i,j]
return expand_array
# 创建灵敏度矩阵
def create_delta_array(self):
return np.zeros((self.channnel_number,self.input_height,self.input_width))
# 前向传递
def forward(self,input_array):
self.input_array=input_array
# first pad image to the size needed
self.padded_input_array=padding(input_array,self.zero_padding)
for f in range(self.filter_number):
filter=self.filters[f]
conv(self.paded_input_array,filter.get_weights(),filter.get_bias())
element_wise_op(self.output_array,self.acitator.forward)
# 反向传递
def bp_sensitivity_map(self, sensitivity_array,activator):
# padding sensitivity map
expanded_array=self.expand_sentivity_map(sensitivity_array)
expanded_width=expanded_array.shape[2]
zp=(self.input_width+self.filter_width-1-expanded_width)/2
padded_array=padding(expanded_array,zp)
self.delta_array=self.create_delta_array()
for f in range(self.filter_number):
filter=self.filter[f]
filpped_weights=np.array(map(lambda i: np.rot90(i,2),filter.get_weights()))
delta_array=self.create_delta_array()
for d in range(delta_array.shape[0])
conv(padded_array[f],filpped_weights[d],delta_array[d],1,0)
self.delta_array+=delta_array
derivative_array=np.array(self.input_array)
element_wise_op(derivative_array,activator.backward)
self.delta_array*=derivative_array
# 参数的梯度是 输入乘以灵敏度矩阵
def bp_gradient(self,sensitivity_array):
expanded_array=self.expand_sensitivity_map(sensitivity_array)
for f in range(self.filter_number):
filter=self.filter[f]
for d in range(filter.weights.shape[0]):
conv(self.padded_input_array[d],expanded_array[f],filter.weights_grad[d],1,0)
filter.bias_grad=expanded_array[f].sum()
# 对参数进行update
def update(self):
for filter in self.filters:
filter.update(self.learning_rate)
python 实现简单卷积网络框架的更多相关文章
- 学习笔记TF028:实现简单卷积网络
载入MNIST数据集.创建默认Interactive Session. 初始化函数,权重制造随机噪声打破完全对称.截断正态分布噪声,标准差设0.1.ReLU,偏置加小正值(0.1),避免死亡节点(de ...
- [记录]python的简单协程框架(回调+时间循环+select)
# -*- coding: utf-8 -*- # @Time : 2018/12/15 18:55 # @File : coroutine.py #一个简单的 Coroutine 框架 import ...
- Python学习之==>Socket网络编程
一.计算机网络 多台独立的计算机通过网络通信设备连接起来的网络.实现资源共享和数据传递.在同一台电脑上可以将D盘上的一个文件传到C盘,但如果想从一台电脑传一个文件到另外一台电脑上就要通过计算机网络 二 ...
- uvloop —— 超级快的 Python 异步网络框架
简短介绍 asyncio是遵循Python标准库的一个异步 I/O框架.在这篇文章里,我将介绍 uvloop: 可以完整替代asyncio事件循环.uvloop是用Cython写的,基于 libuv. ...
- Python实现简单框架及三大框架对比
手撸web框架 简单的请求响应实现 要实现最简单的web框架,首先要对网络熟悉,首先HTTP协议是应用层的协议,只要我们给数据加上HTTP格式的响应报头,我们的数据就能基于socket进行实现了 im ...
- python网络框架Twisted
什么是Twisted Twisted是一个用python语言写的事件驱动网络框架,它支持很多种协议,包括UDP,TCP,TLS和其他应用层协议,比如HTTP,SMTP,NNTM,IRC,XMPP/Ja ...
- 用Python写一个简单的Web框架
一.概述 二.从demo_app开始 三.WSGI中的application 四.区分URL 五.重构 1.正则匹配URL 2.DRY 3.抽象出框架 六.参考 一.概述 在Python中,WSGI( ...
- iOS开发网络篇—简单介绍ASI框架的使用
iOS开发网络篇—简单介绍ASI框架的使用 说明:本文主要介绍网络编程中常用框架ASI的简单使用. 一.ASI简单介绍 ASI:全称是ASIHTTPRequest,外号“HTTP终结者”,功能十分强大 ...
- Android中android-async-http开源网络框架的简单使用
android-async-http开源网络框架是专门针对Android在Apache的基础上构建的异步且基于回调的http client.所有的请求全在UI线程之外发生,而callback发生在创建 ...
随机推荐
- 【Python 15】分形树绘制3.0(递归函数)
1.案例描述 将递归函数与循环函数结合绘制2.0的图形 2.案例分析 3.上机实验 """ 作者:梁斌 功能:五角星的绘制 版本:3.0 日期:03/08/2017 新增 ...
- TensorRT&Sample&Python[network_api_pytorch_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未 ...
- EF 6.x和EF Core实现返回dynamic类型
前言 未曾想需要直接返回dynamic,多次尝试未能实现,最终还是在stackoverflow上找到了解决方案,特此备忘录. public static dynamic SqlQuery(this D ...
- oracle:TNS:监听程序无法分发客户机连接
挂上vpn的时候,PL/SQL连接到oracle的时候,显示ORA-12518:监听程序无法分发客户机连接.如下图: 一.[问题描述] 最近,在系统高峰期的时候,会提示如上的错误,致使无法连接到服务器 ...
- React Native之通知栏消息提示(ios)
React Native之通知栏消息提示(ios) 一,需求分析与概述 详情请查看:React Native之通知栏消息提示(android) 二,极光推送注册与集成 2.1,注册 详情请查看:Rea ...
- HTTP简明学习
前面的话 本文将详细介绍HTTP主要内容 概述 Web 的诞生,源于三大技术的诞生,它们都是当年 Web 之父 Tim Berners-Lee 自己 开发的,世界上第一个网站诞生的时间是 1991 年 ...
- codeforces660C
Hard Process CodeForces - 660C You are given an array a with n elements. Each element of a is either ...
- [LOJ10121] 与众不同
题目类型:\(DP\)+\(RMQ\) 传送门:>Here< 题意:给定一个长度为\(N\)的序列,并给出\(M\)次询问.询问区间\([L,R]\)内的最长完美序列.所谓完美序列就是指连 ...
- Django 路由系统
Django 路由系统 基本格式 from django.conf.urls import url urlpatterns = [ url(正则表达式, views视图函数,参数,别名), ] 参数说 ...
- Makefile 常用函数表
Makefile 常用函数表 一.字符串处理函数1.$(subst FROM,TO,TEXT)函数名称:字符串替换函数—subst.函数功能:把字串“TEXT”中的“FROM”字符替换为“TO”.返 ...