numpy(一)
np.zeros(10,dtype=int) #创建全为0的一位数组
np.ones((3,5),dtype=float) #创建3*5的二维全为1的数组
np.full((3,5),3.14) #创建全为3.14的3*5数组
np.arange(0,20,2) #创建0-20步长为2的线性序列数组 和range相似
np.linspace(0,1,5) #创建0-1之间的5个数数组
np.random.random((3,3)) #创建3*3在0-1之间均匀分布的随机数组成的数组
np.random.normal(0,1,(3,3)) #创建3*3的均值为0方差为1的正态分布随机数数组
np.random.randint(0,10,(3,3)) #创建3*3在0-10区间的随机整数型数组
np.eye(3) # 创建3*3的单位矩阵
np.empty(3) #创建一个有3个整数型组成的未初始化数组,值可以使内存空间的任意值
np属性:
np.ndim 数组的维度
np.shape 数组的每个维度大小
np.size 数组的总大小
dtype 数据类型
切片,索引:
x=np.array([5,2,3,7,8,9])
x[0] #取索引为0的值
x[-1] #取最后一个值
x2=np.arange(0,24).reshape((3,8))
x2[0,1] #取行索引为0列索引为1的值
x2[0,0]=12 #修改值
#当将一个浮点型插入到整数型数组中时,浮点型会被截断
一维切片:
x=np.arange(10)
x[:5] #取前五个元素
x[5:] #取后五个元素
x[4:7] # 取中间子数组
x[::2] #步长为2取出数组
x[::-1] #逆向取数组
多维切片:
x2=np.arange(12).reshape((3,4))
x2[:2,:3] #两行三列
x2[:3,::2] #取三行,列隔行取
x2[::-1,::-1] # 逆向取
x2[:,0] #取第一列
x2[0,:] # 取第一行
x2[0] #取第一行简化
*注意切片获取到的元素改变原数组也会改变,需加copy
reshape重组数组
np.arange(12).reshape((3,4)) #重组成3*4的二维数组
x2[np.newaxis,:] #获取行向量
x2[:,np.newaxis] #获取列向量
数组拼接:
一维数组:
x=np.array([1,2,3])
y=np.array([3,2,1])
z=np.array([4,5,6])
np.concatenate([x,y,z])
二维数组:
x=np.arange(12).reshape((3,4))
y=np.arange(12,24).reshape((3,4))
np.concatenate([x,y],axis=1) # axis=1左右拼接,axis=0上下拼接
np.vstack 垂直栈函数,上下拼接,np.hstack 水平栈左右拼接
np.dstack 沿第三个维度拼接
数组分裂:
x=[1,2,3,55,55,3,2,1]
x1,x2,x3 = np.split(x,[3,5])
vsplit 行分裂,hspit列分裂,dsplit第三维度分裂
numpy(一)的更多相关文章
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 利用Python进行数据分析(6) NumPy基础: 矢量计算
矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...
- python安装numpy、scipy和matplotlib等whl包的方法
最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...
- 深入理解numpy
一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...
- Python Numpy,Pandas基础笔记
Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...
- broadcasting Theano vs. Numpy
broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...
- python之numpy
一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...
- win7系统下python安装numpy,matplotlib,scipy和scikit-learn
1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...
- 给numpy矩阵添加一列
问题的定义: 首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3], ...
随机推荐
- python学习第25天
异常处理 什么是异常?什么是错误? 1,程序中难免出现错误. 错误主要分为两种: 1,语法错误 语法错误是根本上的错误,无法通过PYTHON解释器.完全无法执行,是在程序中不应该出现的错误.无法进行异 ...
- 【原创】大叔经验分享(5)oozie提交spark任务如何添加依赖
spark任务添加依赖的方式: 1 如果是local方式运行,可以通过--jars来添加依赖: 2 如果是yarn方式运行,可以通过spark.yarn.jars来添加依赖: 这两种方式在oozie上 ...
- 【原创】大叔案例分享(4)定位分析--见证scala的强大
一 场景分析 定位分析广泛应用,比如室外基站定位,室内蓝牙beacon定位,室内wifi探针定位等,实现方式是三点定位 Trilateration 理想情况 这种理想情况要求3个基站‘同时’采集‘准确 ...
- Ubuntu18.04 LTS 安装部署golang最新版本1.10
1 步骤 //1 直接安装golang-go 目前最新版本是1.10 sudo apt-get install golang-go //2 向/etc/profile追加以下代码 sudo vim / ...
- javascript中事件对象注册与删除
事件对象 注册事件 直接给dom对象设置属性,只能给对象设置一个属性,如果设置多个事件处理函数,则最后的生效: 给html标签设置属性,(若法1和法2同时使用,则法1生效): 事件注册 绑定事件监听函 ...
- VMware安装CentOS7系统
- c/c++/java如何访问数据库(优秀博文)
(下面是c++) https://www.cnblogs.com/47088845/p/5706496.html https://www.cnblogs.com/shiyingzhi/p/7896 ...
- LLDB 中从地址设置为变量
// set language and import framework settings set target.language swift expr -l Swift -- import UIKi ...
- Golang 新手可能会踩的 50 个坑【转】
译文:https://github.com/wuYin/blog/blob/master/50-shades-of-golang-traps-gotchas-mistakes.md 原文:50 Sha ...
- NEO GUI 多方签名使用
众所周至,NEOGUI是一个开发者演示用钱包,使用体验是非常的不友好的. 今天本来打算使用多方签名账户,发现和想象的不一样,请教了小伙伴也不行.遂调试了一下原因,发现踩进坑里了. 把这个问题记 ...