选用CUDA10.0镜像

添加nvidia-cuda和修改apt源

curl -fsSL https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/ /" > /etc/apt/sources.list.d/cuda.list && \
bash /public/script/switch_apt_source.sh

安装curand

apt install cuda-curand-dev-10-0

修改conda源

bash /public/script/switch_conda_source.sh

创建python3.7虚拟环境

conda create -n py37 python=3.7
conda deactivate
conda activate py37



安装依赖包

apt-get -y install libboost-dev libprotobuf-dev libgflags-dev libgoogle-glog-dev libhdf5-dev libopencv-dev protobuf-c-compiler protobuf-compiler libopenblas-dev libhdf5-dev libleveldb-dev liblmdb-dev libboost-system-dev libboost-filesystem-dev libsnappy-dev libboost-thread-dev libatlas-base-dev libboost-python-dev

添加nvidia-machine-learning软件源

curl -fsSL https://mirrors.cloud.tencent.com/nvidia-machine-learning/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://mirrors.cloud.tencent.com/nvidia-machine-learning/ubuntu1804/x86_64/ /" > /etc/apt/sources.list.d/cuda.list

安装剩余依赖包

apt update
apt install libnccl2=2.6.4-1+cuda10.0 libnccl-dev=2.6.4-1+cuda10.0
apt-get install -y --no-install-recommends libboost-all-dev
pip install boost
conda install opencv

git clone caffe仓库

git clone -b 1.0 --depth 1 https://github.com/BVLC/caffe.git
cd caffe
for req in $(cat python/requirements.txt); do pip install $req; done
cp Makefile.config.example Makefile.config
git clone -b 1.0 --depth 1 https://gitee.com/matpools/caffe.git

查找对应路径

python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())"
python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))"

(py37) root@a688d840812b:/caffe# python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())"
/root/miniconda3/envs/py37/include/python3.7m
(py37) root@a688d840812b:/caffe# python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))"
/root/miniconda3/envs/py37/lib

查找numpy路径

find /root/miniconda3/envs/py37/lib/ -name numpy

(py37) root@a688d840812b:/caffe# find /root/miniconda3/envs/py37/lib/ -name numpy
/root/miniconda3/envs/py37/lib/python3.7/site-packages/numpy/core/include/numpy

如果也是cuda10纯镜像可以直接复制下面的文件,然后保存。

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h. 如果是自己弄需要改PYTHON_INCLUDE
PYTHON_INCLUDE := /root/miniconda3/envs/py37/include/python3.7m \
/root/miniconda3/envs/py37/lib/python3.7/site-packages/numpy/core/include
# /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) 如果是自己弄需要改PYTHON_LIBRARIES
PYTHON_LIBRARIES := boost_python3 python3.7m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. 如果是自己弄需要改PYTHON_LIB
PYTHON_LIB := /root/miniconda3/envs/py37/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/lib/x86_64-linux-gnu # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

开始编译

make clean
make all -j6
make clean
make pycaffe -j6

设置环境变量

export PYTHONPATH=/caffe/python/:$PYTHONPATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/root/miniconda3/envs/py37/lib

使用ipython环境测试

ipython
import caffe
caffe.set_mode_gpu()
caffe.__version__

使用官方examples测试

#!/usr/bin/env sh
# This scripts downloads the mnist data and unzips it. DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR" echo "Downloading..." for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
do
if [ ! -e $fname ]; then
wget --no-check-certificate https://storage.googleapis.com/cvdf-datasets/mnist/${fname}.gz
gunzip ${fname}.gz
fi
done
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh
nvidia-smi -l 5

参考文章

https://hub.docker.com/r/floydhub/caffe/tags?page=1&ordering=last_updated

https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/url_checksums/mnist.txt

https://www.cnblogs.com/laosan007/p/11737704.html

https://blog.csdn.net/u010417185/article/details/53559107

https://github.com/BVLC/caffe/issues/720

https://github.com/BVLC/caffe/issues/263

https://github.com/BVLC/caffe/issues/6063

https://github.com/BVLC/caffe/issues/4843#issue-182962618

https://blog.csdn.net/xuezhisdc/article/details/48707101

矩池云上安装caffe gpu教程的更多相关文章

  1. 矩池云上安装yolov4 darknet教程

    这里我是用PyTorch 1.8.1来安装的 拉取仓库 官方仓库 git clone https://github.com/AlexeyAB/darknet 镜像仓库 git clone https: ...

  2. 矩池云上安装ikatago及远程链接教程

    https://github.com/kinfkong/ikatago-resources/tree/master/dockerfiles 从作者的库中可以看到,该程序支持cuda9.2.cuda10 ...

  3. 矩池云上使用nvidia-smi命令教程

    简介 nvidia-smi全称是NVIDIA System Management Interface ,它是一个基于NVIDIA Management Library(NVML)构建的命令行实用工具, ...

  4. 矩池云上安装 NVCaffe教程

    使用的是P100,cuda11.1base镜像 创建虚拟环境 conda create -n py36 python=3.6 conda deactivate conda activate py36 ...

  5. 矩池云上安装yolov5并测试教程

    官方仓库:https://github.com/ultralytics/yolov5 官方文档:https://docs.ultralytics.com/quick-start/ 此案例我是租用了k8 ...

  6. 矩池云上安装及使用Milvus教程

    选择cuda10.1的镜像 更新源及拷贝文件到本地 apt-get update cp -r /public/database/milvus/ / cd /milvus/ cp ./lib/* /us ...

  7. 矩池云上编译安装dlib库

    方法一(简单) 矩池云上的k80因为内存问题,请用其他版本的GPU去进行编译,保存环境后再在k80上用. 准备工作 下载dlib的源文件 进入python的官网,点击PyPi选项,搜索dilb,再点击 ...

  8. 在矩池云上复现 CVPR 2018 LearningToCompare_FSL 环境

    这是 CVPR 2018 的一篇少样本学习论文:Learning to Compare: Relation Network for Few-Shot Learning 源码地址:https://git ...

  9. 矩池云 | 高性价比的GPU租用深度学习平台

    矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验.在性价比上,我们以 2080Ti 单卡为例,36 小时折扣后的价格才 55 元,每小时单价仅 1.52 元,属于全网最低价.用户 ...

随机推荐

  1. Nginx 配置 HTTPS 服务器

    Nginx 配置 HTTPS 服务器 Chrome 浏览器地址栏标志着 HTTPS 的绿色小锁头从心理层面上可以给用户专业安全的心理暗示,本文简单总结一下如何在 Nginx 配置 HTTPS 服务器, ...

  2. NFS共享存储服务 (如果厌倦了外面的生活,那就来我身边吧,帮我插秧)

    NFS共享存储服务     1.NFS概述 2.在服务器使用NFS发布共享资源 3.在客户机中访问NFS共享资源 1.NFS概述: NFS是一种基于TCP/IP传输的网络文件系统协议.通过使用NFS协 ...

  3. shell——并发工具parallel

    官方文档:https://www.gnu.org/software/parallel/parallel_tutorial.html 安装 (wget -O - pi.dk/3 || curl pi.d ...

  4. VBA如何实现筛选条件之“排除某些值”

    小爬一般习惯使用Python来解决爬虫和某些办公自动化场景问题,不过最近却需要实现一个VBA需求:从一堆人员处理的Excel数据记录中,排除某些"用户名称"处理的数据.整个思考过程 ...

  5. 利用LNMP实现wordpress站点搭建

    一.部署MySQL 1.1 二进制安装mysql5.6 # 准备用户,依赖包,二进制程序 [root@nginx ~]# yum install -y libaio perl-Data-Dumper ...

  6. make小tip

    总所周知make一般需要Makefile才能编译相关源码,但也可以无需Makefile就能编译一些简单的源代码. 在算法竞赛里,一道题的源程序一般只有一个文件,此时用Makefile显得十分累赘,但如 ...

  7. Java如何实现消费数据隔离?

    我是3y,一年CRUD经验用十年的markdown程序员‍常年被誉为优质八股文选手 今天继续更新austin项目,如果还没看过该系列的同学可以点开我的历史文章回顾下,在看的过程中不要忘记了点赞哟!建议 ...

  8. CentOS7搭建ntp时钟服务器

    文章目录 服务器配置 远程客户端配置 服务器配置 # 关闭防火墙,selinux=disabled 1.# 服务器部署 [root@localhost ~]# yum -y install ntp n ...

  9. CentOS 7.6 部署 GlusterFS 分布式存储系统

    文章目录 GlusterFS简介 环境介绍 开始GlusterFS部署 配置hosts解析 配置GlusterFS 创建文件系统 安装GlusterFS 启动GlusterFS 将节点加入到主机池 创 ...

  10. 数据缓存Cache

    在MyBatis - 随笔分类 - 池塘里洗澡的鸭子 - 博客园 (cnblogs.com)中有关于Mybatis中Cache技术实现及应用介绍.Cache技术实现都是implements Cache ...