【pkuwc2018】随机算法
我们考虑用状压dp来解决这一道题
设$f[i][S]$表示当前排列的前i位所构成的最大独立集恰好为S的方案数
我们考虑用$f[i][S]$推出$f[i+1][S']$的值
那么我们有两种扩展的方法,一种是在第$i+1$位,加入一个数$j$,满足$S∩j=∅$,且$S∪j$为最大独立集。
这种情况,相当于在原本的最大独立集中,新加入了一个点j,那么显然可以对答案产生贡献
则有$f[i+1][S|(1<<j)]+=f[i][S]$
另一种是:我们在第i+1位,填入一个不会对最大独立集产生变化的数。
根据题意,我们要填入一个数j,满足集合S中,存在于节点$j$相邻的点。
则有$f[i+1][S]+=f[i][S]*(p[S]-i) $,其中$p[S]$表示与集合$S$相连的点的个数+集合$S$所包含的点数
设题目中所给的图的最大独立集大小为$k$
最后的答案显然为$\dfrac{\sum\limits_{|S|=k}f[n][k]}{n!}$
#include<bits/stdc++.h>
#define M 20
#define lowbit(x) ((x)&(-(x)))
#define MOD 998244353
#define L long long
using namespace std; L pow_mod(L x,L k){L ans=1; for(;k;k>>=1,x=x*x%MOD) if(k&1) ans=ans*x%MOD; return ans;} int a[M],ok[1<<M],p[1<<M],siz[1<<M];
L f[M+1][1<<M];
int n,m,U; int main(){
scanf("%d%d",&n,&m);
U=1<<n;
for(int i=1;i<U;i++) siz[i]=siz[i-lowbit(i)]+1;
for(int i=0;i<n;i++) a[i]^=(1<<i);
for(int i=1;i<=m;i++){
int x,y; scanf("%d%d",&x,&y);
x--; y--;
a[x]^=(1<<y); a[y]^=(1<<x);
}
ok[0]=1;
for(int i=0;i<U;i++)
if(ok[i]){
for(int j=0;j<n;j++)
if((i&a[j])==0)
ok[i|(1<<j)]=1;
}
int maxn=0;//最大独立集大小
for(int i=1;i<U;i++) if(ok[i]) maxn=max(maxn,siz[i]); for(int i=1;i<U;i++)
for(int j=0;j<n;j++)
if(i&a[j]) p[i]++;
//p[S] 与点集S相连的点数为多少(包括S中的点) f[0][0]=1;
for(int i=0;i<n;i++)
for(int S=0;S<U;S++)
if(f[i][S]){
f[i+1][S]=(f[i+1][S]+f[i][S]*(p[S]-i))%MOD; for(int j=0;j<n;j++)
if((S&(1<<j))==0&&ok[S|(1<<j)]){
f[i+1][S+(1<<j)]=(f[i+1][S+(1<<j)]+f[i][S])%MOD;
}
} L ans=0;
for(int S=1;S<U;S++)
if(siz[S]==maxn&&ok[S]==1)
ans=(ans+f[n][S])%MOD; L fac=1;
for(int i=1;i<=n;i++) fac=fac*i%MOD;
printf("%lld\n",ans*pow_mod(fac,MOD-2)%MOD);
}
【pkuwc2018】随机算法的更多相关文章
- [PKUWC2018]随机算法
题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- LG5492 [PKUWC2018]随机算法
题意 有一种贪心求最大独立集的算法: 随机一个排列 按顺序加入独立集,如果一个点能加入,就加入\({S}\) 给出一张图,问得出正确答案的概率. \(n \leq 20\) 传送门 思路 用 \(dp ...
- 题解-PKUWC2018 随机算法
Problem loj2540 题意简述:给定\(n\)个点的无向图,给定求最大独立集的近似算法:随机排列\(1\cdots n\),按照该排列顺序贪心构造最大独立集(即对每个点能加入独立集就加),求 ...
- LOJ2540 [PKUWC2018] 随机算法 【状压DP】
题目分析: 听说这题考场上能被$ O(4^n) $的暴力水过,难不成出题人是毕姥爷? 首先思考一个显而易见的$ O(n^2*2^n) $的暴力DP.一般的DP都是考虑最近的加入了哪个点,然后删除后递归 ...
- LOJ2540 PKUWC2018 随机算法 状压DP
传送门 两种$DP$: ①$f_{i,j}$表示前$i$次选择,最大独立集为$j$时达到最大独立集的方案总数,转移:$a.f_{i,j}+=f_{i+1,j+2^k}$(保证$k$加入后符合条件):$ ...
- [LOJ2540] [PKUWC2018] 随机算法
题目链接 LOJ:https://loj.ac/problem/2540 Solution 写的时候脑子不太清醒码了好长然后时间\(LOJ\)垫底... 反正随便状压\(dp\)一下就好了,设\(f[ ...
- [LOJ#2540][PKUWC2018]随机算法(概率DP)
场上数据很水,比较暴力的做法都可以过90分以上,下面说几个做法. 1. 暴力枚举所有最大独立集,对每个独立集分别DP.复杂度玄学,但是由于最大独立集并不多,所以可以拿90. 2. dp[S][k]表示 ...
- 【LOJ2540】「PKUWC2018」随机算法
题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
随机推荐
- [MRCTF2020]Ezpop-1|php序列化
1.打开题目获取到源代码信息,如下: Welcome to index.php <?php //flag is in flag.php //WTF IS THIS? //Learn From h ...
- IDEA中Maven Project所在位置
难免有小伙伴找不着这个在哪. 一.首先就是可以在下面这个位置查询到: 二.如果找不着,那么在这里找: 三.如果还找不到,那就没有是你刚导入的项目没有Add Maven, 下面这个图是我Add Mav ...
- NC25136 [USACO 2006 Ope B]Cows on a Leash
NC25136 [USACO 2006 Ope B]Cows on a Leash 题目 题目描述 给定如图所示的若干个长条.你可以在某一行的任意两个数之间作一条竖线,从而把这个长条切开,并可能切开其 ...
- 【cartographer_ros】五: 发布和订阅陀螺仪Imu信息
上一节介绍了里程计Odometry传感数据的订阅和发布. 本节会介绍陀螺仪Imu数据的发布和订阅.陀螺仪在cartographer中主要用于前端位置预估和后端优化. 目录 1:sensor_msgs/ ...
- Throwable类中3个异常处理的方法和finally代码块
/* Throwable类中定义了3个异常处理的方法 String getMessage() 返回此 throwable 的简短描述. String toString() 返回此 throwable ...
- SpringCloud Gateway微服务网关实战与源码分析-上
概述 定义 Spring Cloud Gateway 官网地址 https://spring.io/projects/spring-cloud-gateway/ 最新版本3.1.3 Spring Cl ...
- Spring 核心概念
Spring 核心概念 引言 本文主要介绍 Spring 源码中使用到的一些核心类 1. BeanDefinition BeanDefinition表示Bean定义,BeanDefinition 中存 ...
- 【问题解决】Axios调用文件下载获取不到文件名
问题描述 自己开发了一个后端下载文件的接口,然后通过浏览器直接访问这个接口,浏览器能正确得到文件名并下载: 而使用Axios时发现获取不到,经过打印响应体发现响应头里没有文件名 而Java后端代码里是 ...
- AOV网的实现(数据结构)
#include <stdio.h> #include <stdlib.h> #include <string.h>//我这里的头以及尾巴与书上的不一样. int ...
- [Linux] 如何在 Linux 电脑上制作专业的视频教程
目录 前言 1.软件工具准备 a. 录音软件 b. 录屏软件 c. 摄像头软件 d. 安卓屏幕操作软件 e. 视频剪辑软件 2.视频教程制作 3.效果 参考链接 前言 博主使用 Arch Linux ...