【pkuwc2018】随机算法
我们考虑用状压dp来解决这一道题
设$f[i][S]$表示当前排列的前i位所构成的最大独立集恰好为S的方案数
我们考虑用$f[i][S]$推出$f[i+1][S']$的值
那么我们有两种扩展的方法,一种是在第$i+1$位,加入一个数$j$,满足$S∩j=∅$,且$S∪j$为最大独立集。
这种情况,相当于在原本的最大独立集中,新加入了一个点j,那么显然可以对答案产生贡献
则有$f[i+1][S|(1<<j)]+=f[i][S]$
另一种是:我们在第i+1位,填入一个不会对最大独立集产生变化的数。
根据题意,我们要填入一个数j,满足集合S中,存在于节点$j$相邻的点。
则有$f[i+1][S]+=f[i][S]*(p[S]-i) $,其中$p[S]$表示与集合$S$相连的点的个数+集合$S$所包含的点数
设题目中所给的图的最大独立集大小为$k$
最后的答案显然为$\dfrac{\sum\limits_{|S|=k}f[n][k]}{n!}$
#include<bits/stdc++.h>
#define M 20
#define lowbit(x) ((x)&(-(x)))
#define MOD 998244353
#define L long long
using namespace std; L pow_mod(L x,L k){L ans=1; for(;k;k>>=1,x=x*x%MOD) if(k&1) ans=ans*x%MOD; return ans;} int a[M],ok[1<<M],p[1<<M],siz[1<<M];
L f[M+1][1<<M];
int n,m,U; int main(){
scanf("%d%d",&n,&m);
U=1<<n;
for(int i=1;i<U;i++) siz[i]=siz[i-lowbit(i)]+1;
for(int i=0;i<n;i++) a[i]^=(1<<i);
for(int i=1;i<=m;i++){
int x,y; scanf("%d%d",&x,&y);
x--; y--;
a[x]^=(1<<y); a[y]^=(1<<x);
}
ok[0]=1;
for(int i=0;i<U;i++)
if(ok[i]){
for(int j=0;j<n;j++)
if((i&a[j])==0)
ok[i|(1<<j)]=1;
}
int maxn=0;//最大独立集大小
for(int i=1;i<U;i++) if(ok[i]) maxn=max(maxn,siz[i]); for(int i=1;i<U;i++)
for(int j=0;j<n;j++)
if(i&a[j]) p[i]++;
//p[S] 与点集S相连的点数为多少(包括S中的点) f[0][0]=1;
for(int i=0;i<n;i++)
for(int S=0;S<U;S++)
if(f[i][S]){
f[i+1][S]=(f[i+1][S]+f[i][S]*(p[S]-i))%MOD; for(int j=0;j<n;j++)
if((S&(1<<j))==0&&ok[S|(1<<j)]){
f[i+1][S+(1<<j)]=(f[i+1][S+(1<<j)]+f[i][S])%MOD;
}
} L ans=0;
for(int S=1;S<U;S++)
if(siz[S]==maxn&&ok[S]==1)
ans=(ans+f[n][S])%MOD; L fac=1;
for(int i=1;i<=n;i++) fac=fac*i%MOD;
printf("%lld\n",ans*pow_mod(fac,MOD-2)%MOD);
}
【pkuwc2018】随机算法的更多相关文章
- [PKUWC2018]随机算法
题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- LG5492 [PKUWC2018]随机算法
题意 有一种贪心求最大独立集的算法: 随机一个排列 按顺序加入独立集,如果一个点能加入,就加入\({S}\) 给出一张图,问得出正确答案的概率. \(n \leq 20\) 传送门 思路 用 \(dp ...
- 题解-PKUWC2018 随机算法
Problem loj2540 题意简述:给定\(n\)个点的无向图,给定求最大独立集的近似算法:随机排列\(1\cdots n\),按照该排列顺序贪心构造最大独立集(即对每个点能加入独立集就加),求 ...
- LOJ2540 [PKUWC2018] 随机算法 【状压DP】
题目分析: 听说这题考场上能被$ O(4^n) $的暴力水过,难不成出题人是毕姥爷? 首先思考一个显而易见的$ O(n^2*2^n) $的暴力DP.一般的DP都是考虑最近的加入了哪个点,然后删除后递归 ...
- LOJ2540 PKUWC2018 随机算法 状压DP
传送门 两种$DP$: ①$f_{i,j}$表示前$i$次选择,最大独立集为$j$时达到最大独立集的方案总数,转移:$a.f_{i,j}+=f_{i+1,j+2^k}$(保证$k$加入后符合条件):$ ...
- [LOJ2540] [PKUWC2018] 随机算法
题目链接 LOJ:https://loj.ac/problem/2540 Solution 写的时候脑子不太清醒码了好长然后时间\(LOJ\)垫底... 反正随便状压\(dp\)一下就好了,设\(f[ ...
- [LOJ#2540][PKUWC2018]随机算法(概率DP)
场上数据很水,比较暴力的做法都可以过90分以上,下面说几个做法. 1. 暴力枚举所有最大独立集,对每个独立集分别DP.复杂度玄学,但是由于最大独立集并不多,所以可以拿90. 2. dp[S][k]表示 ...
- 【LOJ2540】「PKUWC2018」随机算法
题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
随机推荐
- Spring Boot:整合Swagger
1.先创建一个SpringBoot项目 其中application.properties文件中是创建项目时自动添加的配置. 2.添加相关maven依赖 <!--swagger--> < ...
- SLF4J 日志门面
目录 01.简单介绍 02.日志级别 03.入门案例 03.动态打印 04.异常打印 05.日志集成 06.集成 logback 07.集成 slf4j-nop 08.集成 log4j 09.集成 j ...
- Tapdata 在线研讨会:实时数据同步应用场景及实现方案探讨
数字化时代的到来,企业业务敏捷度的提升,对传统的数据处理和可用性带来更高的要求,实时数据同步技术的发展,给基于数据的业务创新带来了更多的可能性.9月8日晚,Tapdata 联合MongoDB 中文社区 ...
- IDEA的概述和IDEA的安装
开发工具概述 IDEA是一个专门针对Java的集成开发工具(IDE),由Java语言编写.所以,需要有JRE运行环境并配置好环境变量. 它可以极大地提升我们的开发效率.可以自动编译,检查错误.在公司中 ...
- BufferedWniter_字符缓冲输出流和BufferedReader_字符缓冲输入流
java.io.BufferedWriter extends Writer BufferedWriter:字符缓冲输出流 继承自父类的共性成员方法: -void write(int c)写入单个字符 ...
- Drone-比Jenkins更轻量化的持续集成部署工具
Drone 简介 Drone 是一个基于Docker容器技术的可扩展的持续集成引擎,由GO语言编写,可用于自动化测试与构建,甚至发布.每个构建都在一个临时的Docker容器中执行,使开发人员能够完全控 ...
- Docker安装NextCloud使用MySQL
安装 1.拉取并启动MySQL,最好把数据可目录挂载到宿主机,以便容器被误删后恢复: docker run --name=nextcloud_db \ -e MYSQL_ROOT_PASSWORD=X ...
- IDEA快捷键之晨讲篇
IDEA之html快捷键 快捷键 释义 ! 生成HTML的初始格式 ---- ---- 标签名*n 生成n个相同的标签 ---- ---- 标签>标签 生成父子级标签(包含) ---- ---- ...
- 多重分派(multiple dispatch)与访问者模式
什么是双重分派 什么是分派(dispatch) 首先我们需要理解「分派」的含义.分派就是将方法调用与对应的具体方法绑定起来.而判断的依据有两点,这两者可称为「宗量」: 方法的接收者,也就是哪个对象调用 ...
- 我有 7种 实现web实时消息推送的方案,7种!
技术交流,公众号:程序员小富 大家好,我是小富- 我有一个朋友- 做了一个小破站,现在要实现一个站内信web消息推送的功能,对,就是下图这个小红点,一个很常用的功能. 不过他还没想好用什么方式做,这里 ...