dp

注意没有声明S不空,处理一下

o(n^2)

class Solution {
public:
string longestPalindrome(string s) {
if (s.empty())
return "";
int len=s.length();
int dp[len][len];
for(int i=0;i<len;i++)
for(int k=0;k<len;k++)
dp[i][k]=0;
int start=0,end=0;
for (int i=0;i<len;i++)
{
dp[i][i]=1;
if((i<len-1)&&(s[i]==s[i+1])){
dp[i][i+1]=1;
start=i;
end=i+1;
}
}
for(int dis=2;dis<len;dis++) // i-> I-1,I+1,所以处理不了两个连续
{
for(int i=0;(i+dis)<len;i++)
if((dp[i+1][i+dis-1]==1)&&(s[i]==s[i+dis]))
{
dp[i][i+dis]=1;
if((dis)>(end-start)){
start=i;
end=i+dis;
}
}
}
return s.substr(start,end-start+1);
}
};

遇到的问题:

== 写成了= 。。。。。

然后dp数组没有先mem为0...

然后是Manacher法

参考https://www.cnblogs.com/mini-coconut/p/9074315.html

首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,

具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:

(1)Len数组简介与性质

Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。

对于上面的例子,可以得出Len[i]数组为:

Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,

证明,

首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。

有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。

(2)Len数组的计算

首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。

设P为之前计算中最长回文子串的右端点,并且设取得这个最大值的位置为po,分两种情况:

第一种情况:i<=P

那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:

那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,

由回文串的定义可知,一个回文串反过来还是一个回文串,

所以以i为中心的回文串的长度至少和以j为中心的回文串一样(因为j,i及其附近点关于P对称,j所在回文串对称过去),即Len[i]>=Len[j]。

因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。

如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。

第二种情况: i>P

如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。

2.时间复杂度分析

Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。

下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。、

#include<iostream>
#include<limits.h>
#include<vector>
using namespace std;
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
class Solution {
public:
    string longestPalindrome(string s)
 {
    string manaStr = "$#";
    for (int i=0;i<s.size();i++) //首先构造出新的字符串
    {
      manaStr += s[i];
      manaStr += '#';
    }
    vector<int> rd(manaStr.size(), 0);//用一个辅助数组来记录最大的回文串长度,注意这里记录的是新串的长度,原串的长度要减去1
    int pos = 0, mx = 0;  //pos 当前最长回文串中点。mx当前最长回文串右端点
    int start = 0, maxLen = 0;  //起点,长度。  rd[i]即为上述len[i]
    for (int i = 1; i < manaStr.size(); i++) 
    {
      rd[i] = i < mx ? min(rd[2 * pos - i], mx - i) : 1;//越界 rd[2*pos-i 即为len[j]
      while (i+rd[i]<manaStr.size() && i-rd[i]>0 && manaStr[i + rd[i]] == manaStr[i - rd[i]])//这里要注意数组越界的判断
          rd[i]++;
      if (i + rd[i] > mx) //如果新计算的最右侧端点大于mx,则更新pos和mx
      {
        pos = i;
        mx = i + rd[i];
      }
      if (rd[i] - 1 > maxLen)
      {
        start = (i - rd[i]) / 2;
        maxLen = rd[i] - 1;
      }
    }
    return s.substr(start, maxLen);
  }
};
int main(int argc, char *argv[])
{
    string s="aacdefcaa";
    
    Solution solution;
    string ret = solution.longestPalindrome(s);
    cout<<ret<<endl;
    system("pause");
    return 0;
}

leetcode5 最长回文字符串 动态规划 Manacher法的更多相关文章

  1. leetcode-5 最长回文子串(动态规划)

    题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...

  2. Manacher算法:求解最长回文字符串,时间复杂度为O(N)

    原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...

  3. 最长回文字符串(manacher算法)

    偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid. 题目描述:      回文串就是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串. ...

  4. 【转载】最长回文字符串(manacher算法)

    原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...

  5. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  6. 最长回文子串的Manacher算法

    对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...

  7. JavaScript之最长回文字符串

    JavaScript经典面试题算法:最长回文字符串 下面的解题方法是通过中心扩散法的方式实现的,具体代码和注释如下(时间复杂度: O(n^2),空间复杂度:O(1)) // str字符串functio ...

  8. 字符串的最长回文串:Manacher’s Algorithm

    题目链接:Longest Palindromic Substring 1. 问题描述 Given a string S, find the longest palindromic substring ...

  9. 计算字符串的最长回文子串 :Manacher算法介绍

    转自: http://www.open-open.com/lib/view/open1419150233417.html Manacher算法 在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简 ...

随机推荐

  1. 【开源】我和 JAP(JA Plus) 的故事

    JA Plus 故事 程序员的故事如此简单之绕不过去的开源情结 我们准备做一件伟大的事,也可以说是一件真真正正普惠的事. 絮 是的,你没有看错,就是"絮"而非"序&quo ...

  2. 容器编排系统K8s之包管理器Helm基础使用

    前文我们了解了k8s上的hpa资源的使用,回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/14293237.html:今天我们来聊一下k8s包管理器helm的相 ...

  3. 1.8V升3V芯片,1.8V升3.3V升压芯片方案

    两节干电池由于耗电量电压会降低,无法长期稳定的输出3V或者3.3V供电,直接两节干电池会供电电压不稳,影响后面电路稳定.两节干电池的供电电压在1.8V-3.2V左右 1.8V升3V升压芯片方案, 如P ...

  4. 十一、UART&TTY驱动

    Linux系统中UART驱动和TTY驱动两者有着紧密的关系,它们不像I2C和SPI驱动是单独一个模块,分析时应当将它们看成一个整体来分析.UART驱动部分依赖于硬件平台,而TTY驱动和具体的平台无关. ...

  5. 一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践

    一套高可用.易伸缩.高并发的IM群聊.单聊架构方案设计实践 一套高可用.易伸缩.高并发的IM群聊.单聊架构方案设计实践-IM开发/专项技术区 - 即时通讯开发者社区! http://www.52im. ...

  6. pip freeze 需求文件requirements.txt的创建及使用 虚拟环境

    总结: 1.输出安装的包信息,并在另一个环境快速安装 Generate output suitable for a requirements file. $ pip freeze docutils== ...

  7. Java反序列化: 基于CommonsCollections4的Gadget分析 Java 序列化与反序列化安全分析

    Java反序列化: 基于CommonsCollections4的Gadget分析 welkin 京东安全 5天前 https://mp.weixin.qq.com/s/OqIWUsJe9XV39SPN ...

  8. TCMalloc源码学习(四)(小内存块释放)

    pagemap_和pagemap_cache_ PageHeap有两个map,pagemap_记录某一内存页对应哪一个span,显然可能多页对应一个span,pagemap_cache_记录某一内存页 ...

  9. SpringBoot-Maven打包压缩瘦身

    SpringBoot-Maven打包压缩瘦身 一.Spring Boot 可执行 jar 分析 1.1 打包 1.2 两种 jar 的比较 1.3 一次打包两个 jar 二.SpringBoot迭代发 ...

  10. 数据库备份和恢复---MariaDB

    定义 数据备份:将源数据再次存储到新的位置 数据恢复:将备份好的数据重新应用到数据库系统 常见的备份类型: 按照是否备份整个数据集来分 完全备份:备份从开始到执行备份这一时刻的所有数据集 增量备份:备 ...