Cannon算法
  • 算法过程

    假设矩阵\(A,B\)和\(C\)都可以分成\(m\times m\)块矩阵,即\(A = (A_{(ij)})_{m\times m},B = (B_{(ij)})_{m\times m}\)和\(C = (C_{(ij)})_{m\times m}\),其中\(A_{ij},B_{ij}\)和\(C_{ij}\)是\(n \times n\)矩阵,进一步假设有\(p = m \times m\)个处理器。为了讨论Cannon算法,引入块置换矩阵\(Q = (Q_{ij})\)。即

\[Q = \left [
\begin{matrix}
0 & 1 &0 & \cdots & 0\\
0 & 0 &1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 &0 & \cdots & 1 \\
1 & 0 &0 & \cdots & 0
\end{matrix}
\right ]
,\quad Q_{ij} =
\begin{cases}
1,j \equiv (i+1)mod m\\
0,other
\end{cases}
\]

\(QA\)就是将\(A\)的所有行向上移动一个位置,\(AQ\)则是将\(A\)的所有列向右移动一个位置。

定义块对角矩阵\(D_A^{(l)} = diag(D_i^{(l)}) = diag(A_{i,i+1mod m})\),容易证明\(A = \sum_{l=0}^{m-1}D_A^{(l)}Q^l\),于是

\[\begin{aligned}
C &=AB=\sum_{l=0}^{m-1}D_A^{(l)}Q^lB\\
&=D_{A}^{(0)}B^{(0)}+D_{A}^{(1)}B^{(1)}+...+D_{A}^{(m-1)}B^{(m-1)}
\end{aligned}
\]

其中\(B^{(l)} = Q^lB = QB^{l-1},l = 0,1,...,m-1\)

假如:\(A\)是\(3\times 3\)的矩阵,则

\[D^{(0)}_A = \left [
\begin{matrix}
A_{0,0} & 0 &0 \\
0 & A_{1,1} &0 \\
0 & 0 & A_{2,2} \\
\end{matrix}
\right ] ,

D^{(1)}_A = \left [
\begin{matrix}
A_{0,1} & 0 &0 \\
0 & A_{1,2} &0 \\
0 & 0 & A_{2,0} \\
\end{matrix}
\right ] ,

D^{(2)}_A = \left [
\begin{matrix}
A_{0,2} & 0 &0 \\
0 & A_{1,0} &0 \\
0 & 0 & A_{2,1} \\
\end{matrix}
\right ]
\]

\[Q^0 = \left [
\begin{matrix}
1 & 0 &0 \\
0 & 1 &0 \\
0 & 0 & 1 \\
\end{matrix}
\right ] ,

Q^1 = \left [
\begin{matrix}
0 & 1 &0 \\
0 & 0 &1 \\
1 & 0 &0 \\
\end{matrix}
\right ] ,

Q^2 = QQ = \left [
\begin{matrix}
0 & 0 &1 \\
1 & 0 &0 \\
0 & 1 & 0 \\
\end{matrix}
\right ]
\]

经过计算\(A = \sum_{l=0}^{m-1}D_A^{(l)}Q^l\)

Cannon算法是为了更加便于并行,可以把矩阵乘转化为若干个小的计算单元,分别用不同的进程去进行计算,而互不干扰。

Cannon算法采用了主从模式的同时也采用了分而治之的模式。一方面,0号线程作为Master,负责矩阵A和矩阵B以及矩阵C的I/O,也负责小矩阵的分发和结果的聚集。而其他节点作为Worker进行本地的小矩阵串行乘法计算。另一方面,Cannon算法将两个大矩阵的乘法运算分解为若干各小矩阵的乘法运算,最终计算结束后,将计算结果聚集回来,也采用了分而治之的思想。cannon算法不仅实现了矩阵乘法运算的并行化,也减少了分块矩阵乘法的局部存储量,节省了节点的内存开销。

MPI中的cannon算法的更多相关文章

  1. Parallel Computing–Cannon算法 (MPI 实现)

    原理不解释,直接上代码 代码中被注释的源程序可用于打印中间结果,检查运算是否正确. #include "mpi.h" #include <math.h> #includ ...

  2. Java中的经典算法之冒泡排序(Bubble Sort)

    Java中的经典算法之冒泡排序(Bubble Sort) 神话丿小王子的博客主页 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一 ...

  3. 分布式数据库中的Paxos 算法

    分布式数据库中的Paxos 算法 http://baike.baidu.com/link?url=ChmfvtXRZQl7X1VmRU6ypsmZ4b4MbQX1pelw_VenRLnFpq7rMvY ...

  4. Java中的查找算法之顺序查找(Sequential Search)

    Java中的查找算法之顺序查找(Sequential Search) 神话丿小王子的博客主页 a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数 ...

  5. Java中的经典算法之选择排序(SelectionSort)

    Java中的经典算法之选择排序(SelectionSort) 神话丿小王子的博客主页 a) 原理:每一趟从待排序的记录中选出最小的元素,顺序放在已排好序的序列最后,直到全部记录排序完毕.也就是:每一趟 ...

  6. STL中的查找算法

    STL中有很多算法,这些算法可以用到一个或多个STL容器(因为STL的一个设计思想是将算法和容器进行分离),也可以用到非容器序列比如数组中.众多算法中,查找算法是应用最为普遍的一类. 单个元素查找 1 ...

  7. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  8. 在opencv3中的机器学习算法

    在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介 ...

  9. Java中的排序算法(2)

    Java中的排序算法(2) * 快速排序 * 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists). * 步骤为: * 1. 从数 ...

随机推荐

  1. Upload 上传 el-upload 上传配置请求头为Content-Type: "multipart/form-data"

    api接口处添加属性 (标红处) // 校验台账 export const checkEquiment = (data) => { return axios({ url: '/job/equip ...

  2. PHP array_intersect_ukey() 函数

    实例 比较两个数组的键名(使用用户自定义函数比较键名),并返回交集: <?phpfunction myfunction($a,$b){if ($a===$b){return 0;}return ...

  3. PDOStatement::fetch

    PDOStatement::fetch — 从结果集中获取下一行(PHP 5 >= 5.1.0, PECL pdo >= 0.1.0) 说明 语法 mixed PDOStatement:: ...

  4. 强烈推荐的 IntelliJ IDEA 插件,别说我没告诉你

    为什么你的 Intellij IDEA 没别人的好用?还不是因为你缺少这几个插件啊! 善用 Intellij IDEA 插件可以提高我们的开发效率,今天和大家一起分享一下实际工作中常用的几款能提升幸福 ...

  5. Docker 基础知识 - 使用 tmpfs 挂载(tmpfs mounts)管理应用程序数据

    卷(volumes) 和 绑定挂载(bind mounts) 允许您在主机和容器之间共享文件,这样即使在容器停止后也可以持久存储数据. 如果在 Linux 上运行 Docker,那么还有第三种选择:t ...

  6. slots属性(省内存,限制属性的定义)

    class Foo: __slots__=['name','age'] #{'name':None,'age':None} # __slots__='name' #{'name':None,'age' ...

  7. Linux用C语言模拟‘ls‘命令

    原理 在linux下使用C语言,通过调用Linux系统的目录访问API来实现一个类似于ls命令功能的小程序,主要是可以练习程序对命令的解析和目录API函数的使用. 实现代码 #include < ...

  8. Python-关于正则表达式的总结

    什么是正则表达式? 正则表达式(regular expression)描述了一种字符串匹配的模式(pattern),用于字符串的 匹配 和 提取 等操作.正则表达式在所有编程语言中都是通用的. 很多人 ...

  9. webgl实现发光线框(glow wireframe)效果

    在之前这篇文章, WebGL 单通道wireframe渲染 我们介绍了webgl如何实现单通道wireframe的效果. 本篇文章就是在此技术原理基础之上,来实现发光的wireframe效果. 要实现 ...

  10. SpringCloud Sidecar 整合.Net WebApi

    在整合.Net的过程中遇到不少问题,一般网上的例子只是调用一个简单的NodeJS示例,并未有详细的介绍及采坑过程. 首先,我的项目结构是:Vue前端 + SpringCloud后端 + .Net的We ...