Cannon算法
  • 算法过程

    假设矩阵\(A,B\)和\(C\)都可以分成\(m\times m\)块矩阵,即\(A = (A_{(ij)})_{m\times m},B = (B_{(ij)})_{m\times m}\)和\(C = (C_{(ij)})_{m\times m}\),其中\(A_{ij},B_{ij}\)和\(C_{ij}\)是\(n \times n\)矩阵,进一步假设有\(p = m \times m\)个处理器。为了讨论Cannon算法,引入块置换矩阵\(Q = (Q_{ij})\)。即

\[Q = \left [
\begin{matrix}
0 & 1 &0 & \cdots & 0\\
0 & 0 &1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 &0 & \cdots & 1 \\
1 & 0 &0 & \cdots & 0
\end{matrix}
\right ]
,\quad Q_{ij} =
\begin{cases}
1,j \equiv (i+1)mod m\\
0,other
\end{cases}
\]

\(QA\)就是将\(A\)的所有行向上移动一个位置,\(AQ\)则是将\(A\)的所有列向右移动一个位置。

定义块对角矩阵\(D_A^{(l)} = diag(D_i^{(l)}) = diag(A_{i,i+1mod m})\),容易证明\(A = \sum_{l=0}^{m-1}D_A^{(l)}Q^l\),于是

\[\begin{aligned}
C &=AB=\sum_{l=0}^{m-1}D_A^{(l)}Q^lB\\
&=D_{A}^{(0)}B^{(0)}+D_{A}^{(1)}B^{(1)}+...+D_{A}^{(m-1)}B^{(m-1)}
\end{aligned}
\]

其中\(B^{(l)} = Q^lB = QB^{l-1},l = 0,1,...,m-1\)

假如:\(A\)是\(3\times 3\)的矩阵,则

\[D^{(0)}_A = \left [
\begin{matrix}
A_{0,0} & 0 &0 \\
0 & A_{1,1} &0 \\
0 & 0 & A_{2,2} \\
\end{matrix}
\right ] ,

D^{(1)}_A = \left [
\begin{matrix}
A_{0,1} & 0 &0 \\
0 & A_{1,2} &0 \\
0 & 0 & A_{2,0} \\
\end{matrix}
\right ] ,

D^{(2)}_A = \left [
\begin{matrix}
A_{0,2} & 0 &0 \\
0 & A_{1,0} &0 \\
0 & 0 & A_{2,1} \\
\end{matrix}
\right ]
\]

\[Q^0 = \left [
\begin{matrix}
1 & 0 &0 \\
0 & 1 &0 \\
0 & 0 & 1 \\
\end{matrix}
\right ] ,

Q^1 = \left [
\begin{matrix}
0 & 1 &0 \\
0 & 0 &1 \\
1 & 0 &0 \\
\end{matrix}
\right ] ,

Q^2 = QQ = \left [
\begin{matrix}
0 & 0 &1 \\
1 & 0 &0 \\
0 & 1 & 0 \\
\end{matrix}
\right ]
\]

经过计算\(A = \sum_{l=0}^{m-1}D_A^{(l)}Q^l\)

Cannon算法是为了更加便于并行,可以把矩阵乘转化为若干个小的计算单元,分别用不同的进程去进行计算,而互不干扰。

Cannon算法采用了主从模式的同时也采用了分而治之的模式。一方面,0号线程作为Master,负责矩阵A和矩阵B以及矩阵C的I/O,也负责小矩阵的分发和结果的聚集。而其他节点作为Worker进行本地的小矩阵串行乘法计算。另一方面,Cannon算法将两个大矩阵的乘法运算分解为若干各小矩阵的乘法运算,最终计算结束后,将计算结果聚集回来,也采用了分而治之的思想。cannon算法不仅实现了矩阵乘法运算的并行化,也减少了分块矩阵乘法的局部存储量,节省了节点的内存开销。

MPI中的cannon算法的更多相关文章

  1. Parallel Computing–Cannon算法 (MPI 实现)

    原理不解释,直接上代码 代码中被注释的源程序可用于打印中间结果,检查运算是否正确. #include "mpi.h" #include <math.h> #includ ...

  2. Java中的经典算法之冒泡排序(Bubble Sort)

    Java中的经典算法之冒泡排序(Bubble Sort) 神话丿小王子的博客主页 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一 ...

  3. 分布式数据库中的Paxos 算法

    分布式数据库中的Paxos 算法 http://baike.baidu.com/link?url=ChmfvtXRZQl7X1VmRU6ypsmZ4b4MbQX1pelw_VenRLnFpq7rMvY ...

  4. Java中的查找算法之顺序查找(Sequential Search)

    Java中的查找算法之顺序查找(Sequential Search) 神话丿小王子的博客主页 a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数 ...

  5. Java中的经典算法之选择排序(SelectionSort)

    Java中的经典算法之选择排序(SelectionSort) 神话丿小王子的博客主页 a) 原理:每一趟从待排序的记录中选出最小的元素,顺序放在已排好序的序列最后,直到全部记录排序完毕.也就是:每一趟 ...

  6. STL中的查找算法

    STL中有很多算法,这些算法可以用到一个或多个STL容器(因为STL的一个设计思想是将算法和容器进行分离),也可以用到非容器序列比如数组中.众多算法中,查找算法是应用最为普遍的一类. 单个元素查找 1 ...

  7. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  8. 在opencv3中的机器学习算法

    在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介 ...

  9. Java中的排序算法(2)

    Java中的排序算法(2) * 快速排序 * 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists). * 步骤为: * 1. 从数 ...

随机推荐

  1. Python按值传递参数和按引用传递参数

    Python按值传递参数和按引用传递参数: 按值传递参数: 使用一个变量的值(数字,字符串),放到实参的位置上 注:传递过去的是变量的副本,无论副本在函数中怎么变,变量的值都不变 传递常量: # 传递 ...

  2. PHP zip_entry_name() 函数

    定义和用法 zip_entry_name() 函数返回 zip 档案的名称.高佣联盟 www.cgewang.com 语法 zip_entry_name(zip_entry) 参数 描述 zip_en ...

  3. 牛客练习赛64 如果我让你查回文你还爱我吗 线段树 树状数组 manacher 计数 区间本质不同回文串个数

    LINK:如果我让你查回文你还爱我吗 了解到了这个模板题. 果然我不会写2333... 考试的时候想到了一个非常辣鸡的 线段树合并+莫队的做法 过不了不再赘述. 当然也想到了manacher不过不太会 ...

  4. 细说selenium的等待条件

    selenium的显示等待 在进行UI自动化测试的时候,我们为了保持用例的稳定性,往往要设置显示等待,显示等待就是说明确的要等到某个元素的出现或者元素的某些条件出现,比如可点击.可见等条件,如果在规定 ...

  5. Linux系统之《消息队列》入手应用

    目录 简述 代码 编译 运行 简述 消息队列是Linux进程间通信方式之一,消息队列一般是用于简单的通信,数据量不大,通信不频繁的情况.如果交互频繁或者数据量大就不适合了. 代码 下面直接上代码,发送 ...

  6. QWebEngineView简单使用

    QWebEngineView是提供一个访问web页面的widget,这里是一个简单的使用代码 头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H #includ ...

  7. 012_go语言中的Functions 函数

    代码演示 package main import "fmt" func plus(a int, b int) int { return a + b } func plusPlus( ...

  8. JVM与Java体系结构

    参考笔记:https://blog.csdn.net/weixin_45759791/article/details/107322503 前言 作为Java工程师的你曾被伤害过吗?你是否也遇到过这些问 ...

  9. XCTF-WEB-高手进阶区-PHP2-笔记

    鬼才作者...特么卡了我那么长时间,这知识点我真不知道 o(╥﹏╥)o 拿Dirserach扫只能扫出来index.php和index.php/login 一度让我怀疑是有我不会的姿势去解这道题 最后 ...

  10. wifi渗透

    前言 本文主要讲述 家庭家庭家庭中(重要的事情说三遍,企业认证服务器的wifi一般非常非常的安全破解不来)如何破解wifi密码,破解wifi密码后的内网渗透利用(简单说明),如何设置wifi路由器更安 ...