Problem Description
#define xhxj (Xin Hang senior sister(学姐)) 

If you do not know xhxj, then carefully reading the entire description is very important.

As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu.

Like many god cattles, xhxj has a legendary life: 

2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the
astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to
send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final.

As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face
gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that
after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type.

Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform,
she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants
to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls.

Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get
a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little
tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.

For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
 

Input
First a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.(

0<L<=R<263-1 and 1<=K<=10).
 

Output
For each query, print "Case #t: ans" in a line, in which t is the number of the test case starting from 1 and ans is the answer.
 

Sample Input

1
123 321 2
 

Sample Output

Case #1: 139

题意:求区间L到R之间的数中满足数位的最长严格递增序列的长度恰好为K的数的个数。

思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数。那么只要模拟nlogn写法的最长上升子序列的求法就行了。这里这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state的,最长上升子序列长为k的方案数这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
ll n,m;
int k;
int wei[30];
ll dp[25][1<<12][12]; //当前为第pos位,状态为state,最长长度为k的方案数
int getnum(int state)
{
int tot=0;
while(state){
if(state&1)tot++;
state>>=1;
}
return tot;
}
int getstate(int state,int x)
{
int i,j;
for(i=x;i<=9;i++){
if((state&(1<<i))!=0 ){
return (state^(1<<i))|(1<<x);
}
}
return (state|(1<<x));
} ll dfs(int pos,int state,int lim,int zero) //zero表示最高位是不是放下了,即是否任然是前导0
{
int i,j;
if(pos==0){
if(getnum(state)==k){
return 1;
}
return 0;
}
if(lim==0 && dp[pos][state][k]!=-1){
return dp[pos][state][k];
}
int ed=lim?wei[pos]:9;
ll ans=0;
int state1,length1;
for(i=0;i<=ed;i++){
if(zero==1 && i==0){
state1=0;
}
else{
state1=getstate(state,i);
}
ans+=dfs(pos-1,state1,lim&&(i==ed),zero&&(i==0) );
}
if(lim==0){
dp[pos][state][k]=ans; //这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state,这样算下去最长上升子序列长为k的方案数
//这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。
}
return ans;
}
ll solve(ll x)
{
ll xx=x;
int i,j,tot=0;
while(xx){
wei[++tot]=xx%10;
xx/=10;
}
return dfs(tot,0,1,1); }
int main()
{
int i,j,T,cas=0;
memset(dp,-1,sizeof(dp));//这里要注意,dp的初始化放在最前面,这样可以少算重复的情况,节省时间
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%d",&m,&n,&k);
cas++;
printf("Case #%d: %I64d\n",cas,solve(n)-solve(m-1) );
}
return 0;
}

hdu4352 XHXJ's LIS (数位dp)的更多相关文章

  1. hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)

    #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...

  2. hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]

    统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  5. HDU.4352.XHXJ's LIS(数位DP 状压 LIS)

    题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...

  6. XHXJ's LIS(数位DP)

    XHXJ's LIS http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others)     ...

  7. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  8. $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$

    正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...

  9. hdu 4352 XHXJ's LIS 数位DP+最长上升子序列

    题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...

随机推荐

  1. python -c 妙用

    前言 python -c 命令还是有用的哈 正文 python的 -c 可以在命令行中调用 python 代码, 实际上 -c 就是 command 的意思 官方文档中解释为(节选自: python ...

  2. 我们NetCore下日志存储设计

    日志的分类 首先往大的来说,日志分2种 ①业务日志: 即业务系统需要查看的日志, 常见的比如谁什么时候修改了什么. ②参数日志: 一般是开发人员遇到问题的时候定位用的, 一般不需要再业务系统里展示. ...

  3. MyISAM与InnoDB两者之间区别与选择(转)

    Mysql在V5.1之前默认存储引擎是MyISAM:在此之后默认存储引擎是InnoDB MyISAM:默认表类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Acces ...

  4. Ubuntu下修改缺省dash shell为bash shell

    Debian和Ubuntu下缺省使用的是shell是dash,而不是bash.从/bin/sh软连接的指向可以看出这点. 这是一个不同于bash的shell,它主要是为了执行脚本而出现,而不是交互,它 ...

  5. 关于SET/GET PARAMETER ID的注意事项

    通常这两个语法配合 PARAMETER, select-options中的参数 memory id来使用. 如,选择屏幕定义 PARAMETER p1 TYPE c LENGTH 10 MEMORY  ...

  6. Django orm中related_name/related_query_name区别

    related_name/related_query_name区别 class Department(models.Model): title = models.CharField(verbose_n ...

  7. scrapy的大文件下载(基于一种形式的管道类实现)

    scrapy的大文件下载(基于一种形式的管道类实现) 爬虫类中将解析到的图片地址存储到item,将item提交给指定的管道 在管道文件中导包:from scrapy.pipelines.images ...

  8. 订阅者模式,公众号、B站、快手用了都说好!

    大家好,今天和大家来聊一个新的设计模式--订阅者模式. 这个模式在我们的生活当中非常常见,可以说是几乎所有的媒体平台都用或多或少地用到了这个模式.比如公众号,我们来仔细梳理一下公众号这个平台当中的整个 ...

  9. 并发条件队列之Condition 精讲

    1. 条件队列的意义 Condition将Object监控器方法( wait , notify和notifyAll )分解为不同的对象,从而通过与任意Lock实现结合使用,从而使每个对象具有多个等待集 ...

  10. Communicating sequential processes CSP 通信顺序进程 CSP writing to a file by name (process, Erlang) vs. writing to a file descriptor (channel, Go)

    the-way-to-go_ZH_CN/01.2.md at master · Unknwon/the-way-to-go_ZH_CN https://github.com/Unknwon/the-w ...