hdu4352 XHXJ's LIS (数位dp)
If you do not know xhxj, then carefully reading the entire description is very important.
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu.
Like many god cattles, xhxj has a legendary life:
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the
astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to
send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final.
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face
gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that
after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type.
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform,
she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants
to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls.
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get
a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little
tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
0<L<=R<263-1 and 1<=K<=10).
123 321 2
题意:求区间L到R之间的数中满足数位的最长严格递增序列的长度恰好为K的数的个数。
思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数。那么只要模拟nlogn写法的最长上升子序列的求法就行了。这里这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state的,最长上升子序列长为k的方案数这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
ll n,m;
int k;
int wei[30];
ll dp[25][1<<12][12]; //当前为第pos位,状态为state,最长长度为k的方案数
int getnum(int state)
{
int tot=0;
while(state){
if(state&1)tot++;
state>>=1;
}
return tot;
}
int getstate(int state,int x)
{
int i,j;
for(i=x;i<=9;i++){
if((state&(1<<i))!=0 ){
return (state^(1<<i))|(1<<x);
}
}
return (state|(1<<x));
}
ll dfs(int pos,int state,int lim,int zero) //zero表示最高位是不是放下了,即是否任然是前导0
{
int i,j;
if(pos==0){
if(getnum(state)==k){
return 1;
}
return 0;
}
if(lim==0 && dp[pos][state][k]!=-1){
return dp[pos][state][k];
}
int ed=lim?wei[pos]:9;
ll ans=0;
int state1,length1;
for(i=0;i<=ed;i++){
if(zero==1 && i==0){
state1=0;
}
else{
state1=getstate(state,i);
}
ans+=dfs(pos-1,state1,lim&&(i==ed),zero&&(i==0) );
}
if(lim==0){
dp[pos][state][k]=ans; //这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state,这样算下去最长上升子序列长为k的方案数
//这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。
}
return ans;
}
ll solve(ll x)
{
ll xx=x;
int i,j,tot=0;
while(xx){
wei[++tot]=xx%10;
xx/=10;
}
return dfs(tot,0,1,1);
}
int main()
{
int i,j,T,cas=0;
memset(dp,-1,sizeof(dp));//这里要注意,dp的初始化放在最前面,这样可以少算重复的情况,节省时间
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%d",&m,&n,&k);
cas++;
printf("Case #%d: %I64d\n",cas,solve(n)-solve(m-1) );
}
return 0;
}
hdu4352 XHXJ's LIS (数位dp)的更多相关文章
- hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)
#define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...
- hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]
统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...
- HDU 4352 XHXJ's LIS 数位dp lis
目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...
- hdu 4352 XHXJ's LIS 数位dp+状态压缩
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...
- HDU.4352.XHXJ's LIS(数位DP 状压 LIS)
题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...
- XHXJ's LIS(数位DP)
XHXJ's LIS http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)
题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...
- $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$
正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...
- hdu 4352 XHXJ's LIS 数位DP+最长上升子序列
题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...
随机推荐
- Centos7安装Jenkins和目录迁移
Centos7安装Jenkins和目录迁移 内容: 安装Jenkins和相关的配置 尝试目录迁移,模拟磁盘空间不足 1. 安装Jenkins和配置 安装 根据Jenkins的官方安装指引,安装步骤如下 ...
- Java并发包源码学习系列:详解Condition条件队列、signal和await
目录 Condition接口 AQS条件变量的支持之ConditionObject内部类 回顾AQS中的Node void await() 添加到条件队列 Node addConditionWaite ...
- 【Web】CSS中的浮动float
CSS中的float 文章目录 CSS中的float 1.float浮动属性 2.float文字环绕图片 3.float浮动的真正原因以及副作用分析 4.清除浮动的四种解决方法 5.实际应用 导航效果 ...
- linux下的命令自动补齐增强
linux 7 下 安装 bash-completion 可以实现命令的参数的自动补齐
- ElasticSearch-IK分词器和集成使用
1.查询存在问题分析 在进行字符串查询时,我们发现去搜索"搜索服务器"和"钢索"都可以搜索到数据: 而在进行词条查询时,我们搜索"搜索"却没 ...
- ORM动态表达式树查询
前言 接口获取参数后,创建返回值模型的条件表达式作为参数,传入使用依赖注入实例化后的业务层. 业务层创建返回值模型的IQUERY后,再使用参数条件表达式.最后进行延迟查询. 代码实现 参数模型Demo ...
- 超精讲-逐例分析 CSAPP:实验2-Bomb!(下)
好了话不多说我们书接上文继续来做第二个实验下面是前半部分实验的连接 5. 第五关 首先感觉应该是个递归问题 /* Round and 'round in memory we go, where we ...
- 2021/1/20随记,MTU
背景: 事情是这样的,客户2台防火墙部署了ipsec,内网互通,但是其中ssh以及其他大命令之类的操作就会卡住,简单的vi命令可以使用. 解决: 排除网络问题,因为内网互通,其次是系统层面问题,最终定 ...
- mail Header Injection Exploit
Preventing Email Header Injection - PHundamental PHP Best Practices - http://nyphp.org/phundamentals ...
- HTTPS学习(二):原理与实践
div.example { background-color: rgba(229, 236, 243, 1); color: rgba(0, 0, 0, 1); padding: 0.5em; mar ...