hdu4352 XHXJ's LIS (数位dp)
If you do not know xhxj, then carefully reading the entire description is very important.
As the strongest fighting force in UESTC, xhxj grew up in Jintang, a border town of Chengdu.
Like many god cattles, xhxj has a legendary life:
2010.04, had not yet begun to learn the algorithm, xhxj won the second prize in the university contest. And in this fall, xhxj got one gold medal and one silver medal of regional contest. In the next year's summer, xhxj was invited to Beijing to attend the
astar onsite. A few months later, xhxj got two gold medals and was also qualified for world's final. However, xhxj was defeated by zhymaoiing in the competition that determined who would go to the world's final(there is only one team for every university to
send to the world's final) .Now, xhxj is much more stronger than ever,and she will go to the dreaming country to compete in TCO final.
As you see, xhxj always keeps a short hair(reasons unknown), so she looks like a boy( I will not tell you she is actually a lovely girl), wearing yellow T-shirt. When she is not talking, her round face feels very lovely, attracting others to touch her face
gently。Unlike God Luo's, another UESTC god cattle who has cool and noble charm, xhxj is quite approachable, lively, clever. On the other hand,xhxj is very sensitive to the beautiful properties, "this problem has a very good properties",she always said that
after ACing a very hard problem. She often helps in finding solutions, even though she is not good at the problems of that type.
Xhxj loves many games such as,Dota, ocg, mahjong, Starcraft 2, Diablo 3.etc,if you can beat her in any game above, you will get her admire and become a god cattle. She is very concerned with her younger schoolfellows, if she saw someone on a DOTA platform,
she would say: "Why do not you go to improve your programming skill". When she receives sincere compliments from others, she would say modestly: "Please don’t flatter at me.(Please don't black)."As she will graduate after no more than one year, xhxj also wants
to fall in love. However, the man in her dreams has not yet appeared, so she now prefers girls.
Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get
a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k.. It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little
tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
0<L<=R<263-1 and 1<=K<=10).
123 321 2
题意:求区间L到R之间的数中满足数位的最长严格递增序列的长度恰好为K的数的个数。
思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数。那么只要模拟nlogn写法的最长上升子序列的求法就行了。这里这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state的,最长上升子序列长为k的方案数这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
ll n,m;
int k;
int wei[30];
ll dp[25][1<<12][12]; //当前为第pos位,状态为state,最长长度为k的方案数
int getnum(int state)
{
int tot=0;
while(state){
if(state&1)tot++;
state>>=1;
}
return tot;
}
int getstate(int state,int x)
{
int i,j;
for(i=x;i<=9;i++){
if((state&(1<<i))!=0 ){
return (state^(1<<i))|(1<<x);
}
}
return (state|(1<<x));
}
ll dfs(int pos,int state,int lim,int zero) //zero表示最高位是不是放下了,即是否任然是前导0
{
int i,j;
if(pos==0){
if(getnum(state)==k){
return 1;
}
return 0;
}
if(lim==0 && dp[pos][state][k]!=-1){
return dp[pos][state][k];
}
int ed=lim?wei[pos]:9;
ll ans=0;
int state1,length1;
for(i=0;i<=ed;i++){
if(zero==1 && i==0){
state1=0;
}
else{
state1=getstate(state,i);
}
ans+=dfs(pos-1,state1,lim&&(i==ed),zero&&(i==0) );
}
if(lim==0){
dp[pos][state][k]=ans; //这里记忆化的时候一定要写成dp[pos][stata][k],表示前pos位,状态为state,这样算下去最长上升子序列长为k的方案数
//这里如果写成dp[pos][state][len]时会出错,因为有多组样例,每一组的k的值不同,那么不同k下得出的dp[pos][state][len]所对应的意义也不同。
}
return ans;
}
ll solve(ll x)
{
ll xx=x;
int i,j,tot=0;
while(xx){
wei[++tot]=xx%10;
xx/=10;
}
return dfs(tot,0,1,1);
}
int main()
{
int i,j,T,cas=0;
memset(dp,-1,sizeof(dp));//这里要注意,dp的初始化放在最前面,这样可以少算重复的情况,节省时间
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%d",&m,&n,&k);
cas++;
printf("Case #%d: %I64d\n",cas,solve(n)-solve(m-1) );
}
return 0;
}
hdu4352 XHXJ's LIS (数位dp)的更多相关文章
- hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)
#define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...
- hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]
统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...
- HDU 4352 XHXJ's LIS 数位dp lis
目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...
- hdu 4352 XHXJ's LIS 数位dp+状态压缩
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...
- HDU.4352.XHXJ's LIS(数位DP 状压 LIS)
题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...
- XHXJ's LIS(数位DP)
XHXJ's LIS http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)
题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...
- $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$
正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...
- hdu 4352 XHXJ's LIS 数位DP+最长上升子序列
题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...
随机推荐
- 【详细】Python基础(一)
@ 目录 前言 1. Python环境的搭建 1.1 python解释器的安装 1.2 pycharm的安装 2. Python基础语法 2.1 基本语法 2.2 数据类型 2.3 标识符与关键字 2 ...
- JPEG解码--(1)JPEG文件格式概览
由于懒和人的忘性,以前做的一些笔记再回过头看时又有些生疏了,我决定把一些内容整理出来,以供有需要的来参考. 了解的人知道其价值所在,不知道的人就弃之如废物吧. 本篇是JPEG解码系列的第一篇--JPE ...
- ftp设置二进制上传
一个不重要的数据库,备份是用expdp导出,然后上传到ftp服务器上面.上周这个主机宕机了,要在别的数据库恢复,发现报如下错误: ORA-39001: invalid argument value O ...
- kafka(二)基本使用
一.Kafka线上集群部署方案 既然是集群,那必然就要有多个Kafka节点机器,因为只有单台机器构成的kafka伪集群只能用于日常测试之用,根本无法满足实际的线上生产需求. 操作系统: kafka由S ...
- consul是什么?
consul概念: consul是用来做注册中心的 他和eureka是一样的 注册中心一般都是集群的形式存在保证高可用 consul像是一个nosql 存储着键值对 可以做存储consul是c/s架构 ...
- Nginx报504 gateway timeout错误的解决方法(小丑搞笑版。。。)
一.今天登录我的网站,突然发现报了下面的一个错误: 我的第一反应是:超时了应该是Nginx代理没有设置超时时间,默认的超时时间估计太小了,然后就按照正常的方式用Xshell连接服务器,应该是网络或者是 ...
- Python爬虫学习笔记(一)
概念: 使用代码模拟用户,批量发送网络请求,批量获取数据. 分类: 通用爬虫: 通用爬虫是搜索引擎(Baidu.Google.Yahoo等)"抓取系统"的重要组成部分. 主要目的是 ...
- CSS奇思妙想 -- 使用 CSS 创造艺术
本文属于 CSS 绘图技巧其中一篇.之前有过一篇:在 CSS 中使用三角函数绘制曲线图形及展示动画 想写一篇关于 CSS 创造艺术的文章已久,本文主要介绍如何借助 CSS-doodle ,利用 CSS ...
- 前端面试之JavaScript中的闭包!
前端面试之JavaScript中的闭包! 闭包 闭包( closure )指有权访问另一个函数作用域中变量的函数. ----- JavaScript 高级程序设计 闭包其实可以理解为是一个函数 简单理 ...
- Python+Selenium+Unittest实现PO模式web自动化框架(4)
1.PageLocators目录下的具体模块 2.PageLocators目录下主要放置个页面的元素定位.用于统一管理个页面的定位元素. 例如:登录页面的元素定位login_page_locator. ...