Lucas(卢卡斯)定理
公式
$$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$
代码如下
typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll comb(ll n, ll m, ll p)
{
if (m > n)
return 0;
ll a = 1, b = 1;
m = min(n - m, m);
while(m)
{
a = (a * n--) % p;
b = (b * m--) % p;
}
return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if (m == 0)
return 1;
return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
例题
解析:m个相同的豆子,放到n个不同的树里,有多少种方法。有$C_{n+m}^m$种。具体详解请看下面的扩展中的插板法。
代码如下:
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll comb(ll n, ll m, ll p)
{
if (m > n)
return 0;
ll a = 1, b = 1;
m = min(n - m, m);
while(m)
{
a = (a * n--) % p;
b = (b * m--) % p;
}
return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if (m == 0)
return 1;
return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
int main(int argc, char* argv[])
{
ios::sync_with_stdio(false);
cin.tie(0);
ll T, n, m, p;
cin >> T;
while (T--)
{
cin >> n >> m >> p;
cout << Lucas(n + m, m, p) << endl;
}
return 0;
}

扩展
插板法
适用类型
一组相同的元素,分成若干不同的组,每组至少一个元素。
例题1
将8个相同的小球放到3个不同的盒子,每个盒子至少放一个球,一共有多少种方法。
解:8个盒子,有7个空,分到3个盒子,需要插2块板,$C_7^2=21$种。
对于不满足每组至少一个元素条件的,应该先转化为标准形式。
例题2
将8个相同的小球放到3个不同的盒子,每个盒子至少放两个球,一共有多少种方法。
解析:先往每一个盒子里放一个小球。转化为:5个相同的小球放到不同的盒子,每个盒子至少放1个小球,一共有多少种方法。$C_4^2=6$种。
例题3
将8个相同的小球放到3个不同的盒子,有多少种方法。
解析:我们先让每个盒子吐出1个球,使得每个盒子至少一个球,分球的时候再让盒子吃回去。转化为:11个相同的球放到3个不同的盒子中,每个盒子至少一个,有多少种方法。$C_{10}^2=45$种。
例题4
$a+b+c=10$有多少组正整数解。
解析:转化为:10个相同的小球,放到不同的3个盒子中,每个盒子至少一个,有多少方法。$C_9^2=36$种。
例题5
$a+b+c=10$有多少组非负整数解。
解析:转化为:13个相同的小球,放到不同的3个盒子中,有多少方法。$C_{12}^2=66$种。
例题6
$a+b+c\leqslant 10$有多少组非负整数解。
解析1:转化为$a+b+c+d =10$,即10个相同的球,放到4个不同的盒子中,有多少方法。$C_{13}^3=286$种。
解析2:列举所有情况:$a+b+c=0(C_2^2)$,$a+b+c=1(C_3^2)$,$\cdots$,$a+b+c=10(C_{12}^2)$,$\sum\limits_{i=2}^{12}C_i^2=C_{13}^3=286$种。
注:$\sum\limits_{i=m}^nC_i^m=C_{n+1}^{m+1}$。
杨辉三角性质之一:斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。
Lucas(卢卡斯)定理的更多相关文章
- Lucas 卢卡斯定理
Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...
- CRT中国剩余定理 & Lucas卢卡斯定理
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- Lucas卢卡斯定理
当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...
- 卢卡斯定理 Lucas (p为素数)
证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...
- 卢卡斯定理Lucas
卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...
- 数论篇7——组合数 & 卢卡斯定理(Lucas)
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...
- Lucas(卢卡斯)定理
Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
随机推荐
- 复杂链表的复制(剑指offer-25)
题目描述 输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针random指向一个随机节点),请对此链表进行深拷贝,并返回拷贝后的头结点.(注意,输出结果中请不要返回 ...
- 通过注入DLL修改API代码实现钩取(一)
通过注入DLL修改API代码实现钩取(一) Ox00 大致思路 通过CreateRemoteThread函数开辟新线程,并将DLL注入进去 通过GetProcessAddress函数找到需钩取的API ...
- python 网络爬虫报错“UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position”解决方案
Python3.x爬虫, 发现报错“UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1:invalid sta ...
- 05 flask源码剖析之配置加载
05 Flask源码之:配置加载 目录 05 Flask源码之:配置加载 1.加载配置文件 2.app.config源码分析 3.from_object源码分析 4. 总结 1.加载配置文件 from ...
- JavaScript动画实例:曲线的绘制
在“JavaScript图形实例:曲线方程”一文中,我们给出了15个曲线方程绘制图形的实例.这些曲线都是根据其曲线方程,在[0,2π]区间取一系列角度值,根据给定角度值计算对应的各点坐标,然后在计算出 ...
- Python 简明教程 --- 23,Python 异常处理
微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 要么做第一个,要么做最好的一个. 目录 我们在编写程序时,总会不自觉的出现一些错误,比如逻辑错误,语 ...
- vue :关于引用jquery的二三问题
webpack版本:3.6.0 首先是引用jquery. 有两个地方要改. 1 (项目地址)/build/webpack.base.conf.js 2 (项目地址)/src/main.js webpa ...
- 动手实现一个较为简单的MQTT服务端和客户端
项目地址:https://github.com/hnlyf168/DotNet.Framework 昨天晚上大致测试了下 ,490个客户端(一个收一个发) 平均估计每个每秒60个包 使用mqtt协 ...
- ES6标准中的import和export
在ES6前, 前端使用RequireJS或者seaJS实现模块化, requireJS是基于AMD规范的模块化库, 而像seaJS是基于CMD规范的模块化库, 两者都是为了为了推广前端模块化的工具 ...
- 2020JAVA最新应对各种OOM代码样例及解决办法
引言 作者:黄青石 链接:https://www.cnblogs.com/huangqingshi/p/13336648.html?utm_source=tuicool&utm_medium= ...