公式

$$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$

代码如下

typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll comb(ll n, ll m, ll p)
{
if (m > n)
return 0;
ll a = 1, b = 1;
m = min(n - m, m);
while(m)
{
a = (a * n--) % p;
b = (b * m--) % p;
}
return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if (m == 0)
return 1;
return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}

例题

HDU 3037

解析:m个相同的豆子,放到n个不同的树里,有多少种方法。有$C_{n+m}^m$种。具体详解请看下面的扩展中的插板法。

代码如下:

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod_pow(ll x, ll n, ll mod)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
ll comb(ll n, ll m, ll p)
{
if (m > n)
return 0;
ll a = 1, b = 1;
m = min(n - m, m);
while(m)
{
a = (a * n--) % p;
b = (b * m--) % p;
}
return a * mod_pow(b, p - 2, p) % p;
}
ll Lucas(ll n, ll m, ll p)
{
if (m == 0)
return 1;
return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
int main(int argc, char* argv[])
{
ios::sync_with_stdio(false);
cin.tie(0);
ll T, n, m, p;
cin >> T;
while (T--)
{
cin >> n >> m >> p;
cout << Lucas(n + m, m, p) << endl;
}
return 0;
}

扩展

插板法

适用类型

一组相同的元素,分成若干不同的组,每组至少一个元素。

例题1

将8个相同的小球放到3个不同的盒子,每个盒子至少放一个球,一共有多少种方法。

解:8个盒子,有7个空,分到3个盒子,需要插2块板,$C_7^2=21$种。

对于不满足每组至少一个元素条件的,应该先转化为标准形式。

例题2

将8个相同的小球放到3个不同的盒子,每个盒子至少放两个球,一共有多少种方法。

解析:先往每一个盒子里放一个小球。转化为:5个相同的小球放到不同的盒子,每个盒子至少放1个小球,一共有多少种方法。$C_4^2=6$种。

例题3

将8个相同的小球放到3个不同的盒子,有多少种方法。

解析:我们先让每个盒子吐出1个球,使得每个盒子至少一个球,分球的时候再让盒子吃回去。转化为:11个相同的球放到3个不同的盒子中,每个盒子至少一个,有多少种方法。$C_{10}^2=45$种。

例题4

$a+b+c=10$有多少组正整数解。

解析:转化为:10个相同的小球,放到不同的3个盒子中,每个盒子至少一个,有多少方法。$C_9^2=36$种。

例题5

$a+b+c=10$有多少组非负整数解。

解析:转化为:13个相同的小球,放到不同的3个盒子中,有多少方法。$C_{12}^2=66$种。

例题6

$a+b+c\leqslant 10$有多少组非负整数解。

解析1:转化为$a+b+c+d =10$,即10个相同的球,放到4个不同的盒子中,有多少方法。$C_{13}^3=286$种。

解析2:列举所有情况:$a+b+c=0(C_2^2)$,$a+b+c=1(C_3^2)$,$\cdots$,$a+b+c=10(C_{12}^2)$,$\sum\limits_{i=2}^{12}C_i^2=C_{13}^3=286$种。

注:$\sum\limits_{i=m}^nC_i^m=C_{n+1}^{m+1}$。

杨辉三角性质之一:斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。

Lucas(卢卡斯)定理的更多相关文章

  1. Lucas 卢卡斯定理

    Lucas: 卢卡斯定理说白了只有一条性质 $$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $ ...

  2. CRT中国剩余定理 & Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  3. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  4. Lucas卢卡斯定理

    当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...

  5. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  6. 卢卡斯定理Lucas

    卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...

  7. 数论篇7——组合数 & 卢卡斯定理(Lucas)

    组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...

  8. Lucas(卢卡斯)定理

    Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...

  9. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

随机推荐

  1. 深入Mybatis源码——执行流程

    前言 上一篇分析Mybatis是如何加载解析XML文件的,本篇紧接上文,分析Mybatis的剩余两个阶段:代理封装和SQL执行. 正文 代理封装 Mybatis有两种方式调用Mapper接口: pri ...

  2. django 本地项目部署uwsgi 以及云服务器部署 uwsgi+Nginx+Docker+MySQL主从

    一 .django 本地项目部署uwsgi 1 本地部署项目 uwsgi安装测试 通过uwsgi 进行简单部署 安装uwsgi命令:pip install uwsgi -i http://pypi.d ...

  3. 【笔记】Java语法

    Java语法 兜兜转转,又绕回到Java了. 最近在学习Java,其实以前也学过,但是技术发展太快了,Java都出到14了..是时候该更新一下知识体系了. 然后看的是网上好评如潮的<Java核心 ...

  4. 机器学习实战基础(三十五):随机森林 (二)之 RandomForestClassifier 之重要参数

    RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’g ...

  5. 集合-ConcurrentLinkedQueue 源码解析

    问题 (1)ConcurrentLinkedQueue是阻塞队列吗? (2)ConcurrentLinkedQueue如何保证并发安全? (3)ConcurrentLinkedQueue能用于线程池吗 ...

  6. Spring Boot中Tomcat是怎么启动的

    Spring Boot一个非常突出的优点就是不需要我们额外再部署Servlet容器,它内置了多种容器的支持.我们可以通过配置来指定我们需要的容器. 本文以我们平时最常使用的容器Tomcat为列来介绍以 ...

  7. bzoj2132圈地计划

    bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...

  8. Spring Bean的生命周期 ---附详细流程图及测试代码

    一.生命周期流程图: Spring Bean的完整生命周期从创建Spring容器开始,直到最终Spring容器销毁Bean,这其中包含了一系列关键点 假设一个Bean实现了所有的接口,大的概况一下Be ...

  9. noi-vim配置

    colorscheme ron set t_Co=256 set mouse=a set ts=4 set sw=4 set nu set ru set ai set ci set cin set l ...

  10. Captura - 免费好用还开源的录屏软件

    首先下载这个软件,国内下载很慢这里提供一个国内下载UCloud-OSS 软件打开后默认英文,现在我们切换到中午模式 在录制屏幕的同时获取声音