题目链接

题目大意:给定一张$n$个点$m$条边的无向图,每条边两个方向的权值不一定相同。问从$1$出发不重复走一条边回到$1$的最短路径。

-------------------

暴力不太会。大概是$dfs$?复杂度不得上天……

正解:对于那些端点不是$1$的边,因为要走最短路,所以这些边只会走一次,所以对答案是没有影响的。考虑端点为$1$的边,我们进行“二进制分组”。每次按照二进制分为两组:入边和出边,然后跑最短路。路径长为$dis[edge[i].to]$加上入边权值。这样做能把所有情况包括进去,符合最优性质。

时间复杂度$O(n\log^2 n)$。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,vis[],dis[],tag[],ans=0x3f3f3f3f;
int head[],cnt=-;
struct edge
{
int next,to,dis;
}edge[];
struct node
{
int dis,pos;
bool operator < (const node &x) const
{
return x.dis<dis;
}
};
priority_queue<node> q;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to,int dis)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
inline void dijkstra()
{
for(int i=;i<=n;i++) dis[i]=0x3f3f3f3f;
memset(vis,,sizeof(vis));
dis[]=;q.push((node){,});
while(!q.empty())
{
node tmp=q.top();q.pop();
int now=tmp.pos;
if (vis[now]) continue;
vis[now]=;
for (int i=head[now];i!=-;i=edge[i].next)
{
if (tag[i]==-) continue;
int to=edge[i].to;
if (dis[to]>dis[now]+edge[i].dis)
{
dis[to]=dis[now]+edge[i].dis;
if (!vis[to]) q.push((node){dis[to],to});
}
}
}
for (int i=head[];i!=-;i=edge[i].next)
if (tag[i]==-&&ans>dis[edge[i].to]+edge[i^].dis)
ans=dis[edge[i].to]+edge[i^].dis;
}
signed main()
{
n=read(),m=read();
memset(head,-,sizeof(head));
for (int i=;i<=m;i++)
{
int u=read(),v=read(),w1=read(),w2=read();
add(u,v,w1);add(v,u,w2);
}
for (int d=;d>=;d--)
{
for (int i=head[];i!=-;i=edge[i].next)
if((i>>d)&) tag[i]=,tag[i^]=-;
else tag[i]=-,tag[i^]=;
dijkstra();
for (int i=head[];i!=-;i=edge[i].next)
if ((i>>d)&) tag[i]=-,tag[i^]=;
else tag[i]=,tag[i^]=-;
dijkstra();
}
printf("%lld",(ans==0x3f3f3f3f)?-:ans);
return ;
}

【BZOJ4398】福慧双修 题解(建图优化)的更多相关文章

  1. 『The Captain 最短路建图优化』

    The Captain(BZOJ 4152) Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小 ...

  2. BZOJ4383/LuoGuP3588 Pustynia/PUS 线段树建图优化

    我会告诉你我看了很久很久才把题目看懂吗???怀疑智商了 原来他给的l,r还有k个数字都是下标... 比如给了一个样例 l, r, k, x1,x2,x3...xk,代表的是一个数组num[l]~num ...

  3. BZOJ4205卡牌配对——最大流+建图优化

    题目描述 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且两张卡牌类别不 ...

  4. 2018.08.29 NOIP模拟 table(拓扑排序+建图优化)

    [描述] 给出一个表格,N 行 M 列,每个格子有一个整数,有些格子是空的.现在需要你 来做出一些调整,使得每行都是非降序的.这个调整只能是整列的移动. [输入] 第一行两个正整数 N 和 M. 接下 ...

  5. [Code+#4] 最短路 - 建图优化,最短路

    最短路问题,然而对于任意\(i,j\),从\(i\)到\(j\)可以只花费\((i xor j) \cdot C\) 对每个点\(i\),只考虑到\(j\)满足\(j=i xor 2^k, j \le ...

  6. [HNOI2019]校园旅行(建图优化+bfs)

    30分的O(m^2)做法应该比较容易想到:令f[i][j]表示i->j是否有解,然后把每个路径点数不超过2的有解状态(u,v)加入队列,然后弹出队列时,两点分别向两边搜索边,发现颜色一样时,再修 ...

  7. CodeForces 786B Legacy(线段树优化建图+最短路)

    [题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...

  8. [bzoj3218] a+b problem [最小割+数据结构优化建图]

    题面 传送门 思路 最小割 我们首先忽略掉那个奇♂怪的限制,就有一个比较显然的最小割模型: 建立源点$S$和汇点$T$ 对于每个元素$i$建立一个点$i$,连边$<S,i,w[i]>$和$ ...

  9. Codeforces 587D - Duff in Mafia(2-SAT+前后缀优化建图)

    Codeforces 题面传送门 & 洛谷题面传送门 2-SAT hot tea. 首先一眼二分答案,我们二分答案 \(mid\),那么问题转化为,是否存在一个所有边权都 \(\le mid\ ...

随机推荐

  1. Redis 6.0 redis-cluster-proxy 说明

    背景 Redis3.0版本之后开始支持了Redis Cluster,Redis也开始有了分布式缓存的概念.关于Redis Cluster的相关说明,可以看之前的几篇文章:Redis Cluster 原 ...

  2. MYSQL 之 JDBC(七):增删改查(五) DAO设计模式

    Data Access Object,数据访问对象 what:访问数据信息的类.包含了对数据的CRUD(create.read.update.delete,增删改查)操作,而不包含任何业务相关的信息. ...

  3. Python之爬虫(二十) Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  4. bzoj1528[POI2005]sam-Toy Cars*&&bzoj1826[JSOI2010]缓存交换

    bzoj1528[POI2005]sam-Toy Cars bzoj1826[JSOI2010]缓存交换 题意: Jasio有n个不同的玩具,它们都被放在了很高的架子上,地板上不会有超过k个玩具.当J ...

  5. django.core.exceptions.ImproperlyConfigured: mysqlclient 1.3.13 or newer is required; you have 0.9.3.解决办法

    "E:\API_Manager_PlatForm\venv\lib\site-packages\django\db\backends\mysql\base.py"在这个路径里件把b ...

  6. 013.Nginx动静分离

    一 动静分离概述 1.1 动静分离介绍 为了提高网站的响应速度,减轻程序服务器(Tomcat,Jboss等)的负载,对于静态资源,如图片.js.css等文件,可以在反向代理服务器中进行缓存,这样浏览器 ...

  7. iview实战 : 树形组件自定义

    Tree树形组件是 iview 中相对复杂的一个组件. 自定义节点内容 使用强大的 Render 函数可以自定义节点显示内容和交互,比如添加图标,按钮等. ——官方文档 但官方的 example 只有 ...

  8. CCNA - Part10 数据包的通信过程

    这篇文章主要是对数据包在同网段和不同网段的转发流程梳理,使用 ping 命令进行实际抓包测试. 网关的概念: 对于像 PC 等终端设备来说,通过交换机可以实现同网段的通信.但如果想要给其他网段发生数据 ...

  9. C++语法小记---如何判断一个变量是不是指针

    如何判断一个变量是不是指针? 思路:模板函数 + 可变参数 + sizeof(函数) #include <iostream> #include <string> using n ...

  10. CentOS 7.0 x86_64官方正式版系统(64位)

    下载地址 http://www.xitongzhijia.net/linux/201603/69219.html