Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

题目大意

平面上给出$n$个点,两两之间都有连边,一条边有两个权值:距离和高度差,求一个生成树使得$\frac{\sum dist_i}{\sum height_i}$最大

思路

『POJ2976』一样,判断时改成prim就可以了

/************************************************
*Author : lrj124
*Created Time : 2018.10.01.20:38
*Mail : 1584634848@qq.com
*Problem : poj2728
************************************************/
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn = 1000 + 10;
double a[maxn][maxn],b[maxn][maxn],tmp[maxn][maxn],Min[maxn];
struct Node { int x,y,z; } p[maxn];
bool vis[maxn];
int n,e[maxn];
inline bool prim(double x) {
for (int i = 1;i <= n;i++)
for (int j = 1;j <= n;j++) tmp[i][j] = a[i][j]-x*b[i][j];
for (int i = 0;i <= n;i++) {
vis[i] = false;
Min[i] = 1000000000;
}
Min[1] = 0;
e[1] = 0;
double ans = 0;
for (int i = 1;i <= n;i++) {
int minnum = 0;
for (int j = 1;j <= n;j++)
if (Min[minnum] > Min[j] && !vis[j]) minnum = j;
vis[minnum] = true;
ans += tmp[e[minnum]][minnum];
for (int j = 1;j <= n;j++)
if (tmp[minnum][j] < Min[j] && !vis[j]) {
Min[j] = tmp[minnum][j];
e[j] = minnum;
}
}
return ans <= 0;
}
int main() {
//freopen("poj2728.in","r",stdin);
//freopen("poj2728.out","w",stdout);
while (scanf("%d",&n) , n) {
for (int i = 1;i <= n;i++) scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
for (int i = 1;i <= n;i++)
for (int j = 1;j <= n;j++) {
a[i][j] = fabs(p[i].z-p[j].z);
b[i][j] = sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
}
double l = 0,r = 1000000000;
while (r-l >= 1e-6) {
double mid = (l+r)/2;
if (prim(mid)) r = mid;
else l = mid;
}
printf("%.3f\n",l);
}
return 0;
}

【POJ2728】Desert King - 01分数规划的更多相关文章

  1. poj2728 Desert King——01分数规划

    题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...

  2. poj2728 Desert King --- 01分数规划 二分水果。。

    这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...

  3. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  4. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  5. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  6. POJ 2728 Desert King | 01分数规划

    题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...

  7. 【POJ2728】Desert King(分数规划)

    [POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...

  8. Desert King (poj 2728 最优比率生成树 0-1分数规划)

    Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   A ...

  9. Desert King(01分数规划问题)(最优斜率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:33847   Accepted: 9208 Descr ...

随机推荐

  1. DNS反向查询

    DNS反向查询是什么 DNS反向查询大概的一个定义就是: 从 IP 地址获取 PTR 记录.也就是说,通过使用一些网络工具可以将 IP 地址转换为主机名. 实际上,PRT 代表 POINTER,在 D ...

  2. TLV通信协议

    基础 TLV协议是BER编码的一种,全称是Tag.length.value.该协议简单高效,能适用于各种通信场景,且具有良好的可扩展性.TLV协议的基本格式如下: 其中,Tag占2个字节,是报文的唯一 ...

  3. 设计模式:visitor模式

    核心:将数据结构和数据的处理分开 注意:注意函数的参数传递和调用关系 例子: class Element; class Visitor { public: virtual void Visit(Ele ...

  4. Supervisor通用配置

    1.简介 supervisor是python开发的一个进程管理工具,可以将一个普通的命令行进程变为后台的守护进程,并且监控进程的运行状态,如果因为异常退出的时候会自动重启.它是通过fork/exec的 ...

  5. Python网络爬虫四大选择器用法原理总结

    前几天小编连续写了四篇关于Python选择器的文章,分别用正则表达式.BeautifulSoup.Xpath.CSS选择器分别抓取京东网的商品信息.今天小编来给大家总结一下这四个选择器,让大家更加深刻 ...

  6. MySQL之高级操作

     新增数据: 基本语法: insert into 表名 [(字段列表)] values(列表值) 在数据插入的时候,假设主键对应的值已经存在,插入一定会失败 主键冲突: 当主键存在冲突的时候(Dupl ...

  7. element ui表格实现单选 但是单选取消会报错

    1.在el-table中添加两个事件  @selection-change="handleSelectionChange"  @current-change="choos ...

  8. BUUCTF-web HappyCTFd (CVE-2020-7245)

    在 CTFd v2.0.0 - v2.2.2 的注册过程中,如果在CTFd的用户名和emails可用,则可以使攻击者接管任意账号. 进入题目,进行注册.查看用户可以看到admin账号,利用漏洞获取ad ...

  9. MyBatis----resultMap的使用

  10. mac下高效安装 homebrew 及完美避坑姿势 (亲测有效)

    世上无难事,只要找到 Homebrew 的正确安装方式. Homebrew 是什么 Homebrew是 mac的包管理器,仅需执行相应的命令,就能下载安装需要的软件包,可以省掉自己去下载.解压.拖拽( ...