A. 【例题1】错排问题


题目描述

求多少个

n

n

n个数的排列

A

A

A ,满足对于任意的

i

(

1

i

n

)

i(1 ≤ i ≤ n)

i(1≤i≤n) 使

A

i

i

Ai ≠ i

Ai​=i 。


输入格式

一个整数 。


输出格式

一个整数,表示答案。


样例

  • 输入样例

2

  • 输出样例

1


数据范围与提示

对于

100

%

100\%

100%的数据,

1

n

20

1 ≤ n ≤ 20

1≤n≤20。


题目解析

首先这道题我们考虑递推;

首先,先以

f

(

1

)

=

0

,

f

(

2

)

=

1

f(1) = 0,f(2) = 1

f(1)=0,f(2)=1.(手推

1

,

2

1,2

1,2项您总会吧)
再从

3

3

3开始进行递推.

考虑从

n

n

n个数分别放在不同的位置有

n

n

n种方法,那么不放在原位就有

n

1

n-1

n−1种方法.
再考虑从

n

n

n中提取一个数

l

l

l.
考虑两种情况

  1. l

    l

    l放在原位上:那么除

    l

    l

    l外的

    n

    1

    n-1

    n−1个数的方法就为

    f

    (

    n

    2

    )

    f(n-2)

    f(n−2)
    (

    n

    1

    n-1

    n−1个数放在不同的位置,有

    n

    1

    n-1

    n−1种方法)

  2. 不把

    l

    l

    l放在原位上:那么对于剩余的

    n

    1

    n-1

    n−1个数就可以放在任何位,那么就是

    f

    (

    n

    1

    )

    f(n-1)

    f(n−1)种方法(同

    n

    n

    n个数分别放在不同的位置,不放在原位的就是

    l

    l

    l)

那么我们就很容易可以得出递推式:

f

(

i

)

=

{

f

(

1

)

=

0

f

(

2

)

=

1

f

(

i

)

=

(

n

1

)

(

f

(

n

1

)

+

f

(

n

2

)

)

(

i

>

2

)

f(i) = \left\{\begin{matrix} &~~~~~~~f(1) = 0~~~~~~~~~f(2) = 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \\ & f(i) = (n - 1) * (f(n-1)+f(n-2)) ~~~~~~~~~~~(i>2)\\ \end{matrix}\right.

f(i)={​       f(1)=0         f(2)=1                                                         f(i)=(n−1)∗(f(n−1)+f(n−2))           (i>2)​


Code

小小的提醒:

20

20

20的数据也要开

l

o

n

g

long

long

l

o

n

g

long

long

#include <cstdio>
#include <iostream>
#define ll long long
using namespace std; ll n, ans, a[25]; int main ()
{
scanf ("%lld", &n);
a[2] = 1;
for (int i = 3; i <= n; ++ i)
a[i] = (i - 1) * (a[i - 1] + a[i - 2]);
printf ("%lld", a[n]);
return 0;
}

[递推] A. 【例题1】错排问题的更多相关文章

  1. HDU 2068 RPG的错排

    要求答对一半或以上就算过关,请问有多少组答案能使他顺利过关. 逆向思维,求答错一半或以下的组数 1,错排 错排公式的由来 pala提出的问题: 十本不同的书放在书架上.现重新摆放,使每本书都不在原来放 ...

  2. 致初学者(四):HDU 2044~2050 递推专项习题解

    所谓递推,是指从已知的初始条件出发,依据某种递推关系,逐次推出所要求的各中间结果及最后结果.其中初始条件或是问题本身已经给定,或是通过对问题的分析与化简后确定.关于递推的知识可以参阅本博客中随笔“递推 ...

  3. HDU 2048:神、上帝以及老天爷(错排公式,递推)

    神.上帝以及老天爷 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  4. ACM_错排(递推dp)

    RPG的错排 Time Limit: 2000/1000ms (Java/Others) Problem Description: 今年暑假GOJ集训队第一次组成女生队,其中有一队叫RPG,但做为集训 ...

  5. 错排-HDU 2049 递推的应用

    当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个 ...

  6. 不容易系列之一(hdu1465)错排+递推

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  7. HDU 2048 神、上帝以及老天爷 【递推】【错排】

    题目链接 Problem Description HDU 2006'10 ACM contest的颁奖晚会隆重开始了!为了活跃气氛,组织者举行了一个别开生面.奖品丰厚的抽奖活动,这个活动的具体要求是这 ...

  8. 神、上帝以及老天爷--hdu2048(错排,递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2048 1. N张字条的所有可能排列自然是N!(分母). 现在的问题就是求N张字条的错排数f(N)(分子 ...

  9. hdu2068-RPG的错排-(dp递推式)

    去年看错排公式,死都看不懂,基础扎实之后再来看就略懂了. 公式: dp[ n ] = ( n-1 ) * ( dp[n-1] + dp[n-2] ) 解析公式:比如有n个元素,各对应n个正确位置,dp ...

随机推荐

  1. how to install zoom meeting app in macOS

    how to install zoom meeting app in macOS https://support.zoom.us/hc/zh-cn/articles/203020795-如何在Mac上 ...

  2. how to fetch html content in js

    how to fetch html content in js same origin CORS fetch('https://cdn.xgqfrms.xyz/') .then(function (r ...

  3. web performance optimise & css

    web performance optimise & css 俄罗斯套娃 clients hints https://cloudinary.com/blog/automatic_respons ...

  4. 2018-1-6-IDEA快速代码生成

    2018-1-6-IDEA快速代码生成 Java 自动生成 Intellij IDEA 利用IDEA编辑器的Live Templates可以实现自定义方法.属性.注释等,下面是我自己的常用模板. 属性 ...

  5. css整理之-----------布局相关

    文档流 文档流指的是元素排版布局过程中,元素会默认自动从左往右,从上往下的流式排列方式布局,文档流可以分为定位流.浮动流.普通流三种 普通流(Normal flow) 在常规流中,盒一个接着一个排列, ...

  6. spring-ioc的注解 理解-1

    简单对象注入的理解 用到了两个对象 Student .Wife ,一个xml配置(在idea编译器的resource文件下),主要是为让spring去扫描注解,一个测试类,一个pom.xml,导入需要 ...

  7. go的循环

    目录 go的循环 一.语法 二.语法简写 1.省略第一部分 2.省略第二部分 3.省略第三部分 4.全省略:死循环 5.终极写法,简洁变形 go的循环 Go中只有for循环,没有while循环.因为w ...

  8. CentOS 7.7上配置mysql

    转载:https://www.cnblogs.com/VinsonYang/p/12333570.html 首先登陆到阿里云,进行远程连接,在这里我使用的是Xshell 6进行连接的. 参照https ...

  9. docker启动ubuntu的桌面环境

    一.概述 由于最近一段时间在家办公,国内服务器在阿里云,国外站点在aws.家里的移动宽带比较差,无法访问aws. 所以尝试在阿里云启动docker,找到一个lxde桌面环境的ubuntu镜像. 二.启 ...

  10. 看完我的笔记不懂也会懂----Ajax

    Ajax(Asynchronous JavaScript And XML) - 本次学习所用到的插件 - XML - JSON - 关于AJAX - HTTP协议 - AJAX重点之XMLHttpRe ...