>传送门<

题意:求最少需要多少个3的倍数按位或后可以得到数字a

思路:利用3的倍数对应的二进制数的性质来先选出一个x,然后根据数字a再配一个y出来

首先,我们都知道十进制中,任意一个数只要每一位相加的和能被3整除,那么这个数就能被3整除。

这是为什么?

因为十进制中每一个位都会10^k次方,那么仅仅是每一位%3的值都是余1,那么我们只要凑3个余1的,那么3就能被这个数整除。

这题思路一样,换成2进制,只要各个位置上的数mod 3后的和相加起来mod 3为0,则这个数就是3的倍数

接下来分类讨论下:

A. 如果a是3的倍数,那么我们直接取a即可

B. 如果a的二进制只有一位或两位,我们根本取不出0以外的三的倍数,所以无解。题目保证有解所以可以基本不考虑太多。

C. a的二进制位至少有三位的情况
  首先明确一些性质
  1.每一个二进制位mod 3 只能得到 1 或 2
  2.每个mod 3 = 2 的数和 mod 3 = 1的数相加 一定是三的倍数
  3.mod 3 后余数相同的数相减以后一定也是三的倍数

Ⅰ. 若a mod 3 = 1

  如果a中的二进制位有至少两个mod 3 =1的,设它们为p和q,我们取{a-p,a-q}即可。
  因为a,p 和 q 都是mod 3 = 1的,所以a-p和a-q必定是三的倍数。同时a-p和a-q等于将原本p,q处的1变成了0. 这样一来,a-p和a-q按位或之后就还是a
  举个例子: a = 19

  

  如果a中的二进制位有恰好一个mod3=1的,那么设mod3=1的这个位为p,mod3=2的某个位为q,我们取{a-p,p+q}即可。
  a-p的道理同上,p+q 因为一个mod 3 = 1,一个 mod 3 = 2 所以两者加起来一定是三的倍数,同时p+q与a-p按位与一定是a,因为a-p去掉的p p+q给补上了 多出的q是原本a中就有的所以没有什么影响。

  

   如果a中的二进制位没有mod3=1的,那么假设有三个mod3=2的位p,q,r,我们取{a-p-q,p+q+r}即可。
   因为p和q都是mod 3 = 2,所以p+q mod 3 = 1,就和 a 是一样的了 故 a-p-q是三的倍数,又因为r也是 mod 3 = 2,所以q+p+r 原本是mod 3 = 6 ,6可以除尽3,所以q+p+r 也是三的倍数

  

Ⅱ.若a mod 3 = 2

  只需把上面的讨论中1与2互换即可,是完全对称的

Code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a;
void solve()
{
scanf("%lld",&a);
vector<ll> bb[2];
for(int i=0;i<=60;i++)
if((a>>i)&1) bb[i&1].push_back(1LL<<i); //记录每一个1的位置和保存他的奇偶
if(a%3==0)
printf("1 %lld\n",a); //本身
else if(bb[1].size()+bb[0].size()<=2) return;//凑不出 (这里可能需要稍微仔细体会下)
else{
ll x,y;
int s = (a%3==2); //余数是2还是1
if(bb[s].size()){//如果原数里有我们需要的,可以直接减去的
x = a-bb[s][0];
if(bb[!s].size()) y = (bb[s][0]) + (bb[!s][0]); //凑3的两种方式
else y = a - bb[s][1];
}else{ //原数里没有余数
x = a-(bb[!s][0]+bb[!s][1]);
y = bb[!s][0]+bb[!s][1]+bb[!s][2];
}
printf("2 %lld %lld\n",x,y);
}
}
int main()
{
int T; cin>>T;
while(T--){
solve();
}
return 0;
}

参考自:
https://blog.csdn.net/sinat_40872274/article/details/97551579

https://blog.csdn.net/A_Pathfinder/article/details/97612078

(建议对着这两篇博客一起看)

2019牛客暑期多校训练营(第四场)D-triples I的更多相关文章

  1. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  2. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  3. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  4. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  5. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  6. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  7. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

  9. 2019牛客暑期多校训练营(第一场)-A (单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/881/A 题意:给定两个长度均为n的数组a和b,求最大的p使得(a1,ap)和(b1,bp)等价,等价的定义为其任意 ...

  10. 2019牛客暑期多校训练营(第一场)A - Equivalent Prefixes(单调栈)

    题意 给定两个$n$个元素的数组$a,b$,它们的前$p$个元素构成的数组是"等价"的,求$p$的最大值."等价"的意思是在其任意一个子区间内的最小值相同. $ ...

随机推荐

  1. 在微信小程序开发中使用Typescript

    Typescript的优势咱不需要赘述太多,有兴趣可以参考(https://www.typescriptlang.org/).今天给大家分享一下如何在微信小程序(或者其他同类小程序)开发中使用Type ...

  2. 初识 D3.js :打造专属可视化

    一.前言 随着现在自定义可视化的需求日益增长,Highcharts.echarts等高度封装的可视化框架已经无法满足用户各种强定制性的可视化需求了,这个时候D3的无限定制的能力就脱颖而出. 如果想要通 ...

  3. Java实现RS485串口通信

    前言 前段时间赶项目的过程中,遇到一个调用RS485串口通信的需求,赶完项目因为楼主处理私事,没来得及完成文章的更新,现在终于可以整理一下当时的demo,记录下来. 首先说一下大概需求:这个项目是机器 ...

  4. ssh连接不上vmware虚拟机centos7.5

    在vmware中安装centos7.5后,手动设置IP地址192.168.1.5,发现主机ping不通虚拟机的IP,以下是我的解决办法 1.vmware设置选择仅主机模式 2.在主机查看vmnet1( ...

  5. Tomcat的整体架构

    Tomcat通过连接器和容器这两个核心组件完成整体工作,连接器负责处理socket连接和网络字节流与Request和Response对象的转化:容器负责加载和管理Servlet,以及具体处理Reque ...

  6. .NET 云原生架构师训练营(模块二 基础巩固 Scrum 核心)--学习笔记

    2.7.2 Scrum 核心 3个工件 5个会议 5个价值观 3个工件 产品待办列表(Product Backlog) Sprint 待办列表(Sprint Backlog) 产品增量(Product ...

  7. Linux 文件查看相关的一些命令

    文件压缩解压命令 # 解压 xxx.xz 并删除 xz -d test.tar.xz # 打包成 xxx.tar , 语法: tar -cvf 最后包名.tar ./要打包文件 ./要打包的文件 ta ...

  8. mysql 需要内核级线程的支持,而不只是用户级线程,这样才能够有效的使用多个cpu

    mysql 需要内核级线程的支持,而不只是用户级线程,这样才能够有效的使用多个cpu

  9. 【Linux】E297: Write error in swap file 解决办法

    今天登陆到服务器上,发现通过vi 打开文件就会报错: E297: Write error in swap file E303: Unable to open swap file for "c ...

  10. 多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning)

    多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning) 作者:凯鲁嘎吉 - 博客园 http://www.cnblo ...