>传送门<

题意:求最少需要多少个3的倍数按位或后可以得到数字a

思路:利用3的倍数对应的二进制数的性质来先选出一个x,然后根据数字a再配一个y出来

首先,我们都知道十进制中,任意一个数只要每一位相加的和能被3整除,那么这个数就能被3整除。

这是为什么?

因为十进制中每一个位都会10^k次方,那么仅仅是每一位%3的值都是余1,那么我们只要凑3个余1的,那么3就能被这个数整除。

这题思路一样,换成2进制,只要各个位置上的数mod 3后的和相加起来mod 3为0,则这个数就是3的倍数

接下来分类讨论下:

A. 如果a是3的倍数,那么我们直接取a即可

B. 如果a的二进制只有一位或两位,我们根本取不出0以外的三的倍数,所以无解。题目保证有解所以可以基本不考虑太多。

C. a的二进制位至少有三位的情况
  首先明确一些性质
  1.每一个二进制位mod 3 只能得到 1 或 2
  2.每个mod 3 = 2 的数和 mod 3 = 1的数相加 一定是三的倍数
  3.mod 3 后余数相同的数相减以后一定也是三的倍数

Ⅰ. 若a mod 3 = 1

  如果a中的二进制位有至少两个mod 3 =1的,设它们为p和q,我们取{a-p,a-q}即可。
  因为a,p 和 q 都是mod 3 = 1的,所以a-p和a-q必定是三的倍数。同时a-p和a-q等于将原本p,q处的1变成了0. 这样一来,a-p和a-q按位或之后就还是a
  举个例子: a = 19

  

  如果a中的二进制位有恰好一个mod3=1的,那么设mod3=1的这个位为p,mod3=2的某个位为q,我们取{a-p,p+q}即可。
  a-p的道理同上,p+q 因为一个mod 3 = 1,一个 mod 3 = 2 所以两者加起来一定是三的倍数,同时p+q与a-p按位与一定是a,因为a-p去掉的p p+q给补上了 多出的q是原本a中就有的所以没有什么影响。

  

   如果a中的二进制位没有mod3=1的,那么假设有三个mod3=2的位p,q,r,我们取{a-p-q,p+q+r}即可。
   因为p和q都是mod 3 = 2,所以p+q mod 3 = 1,就和 a 是一样的了 故 a-p-q是三的倍数,又因为r也是 mod 3 = 2,所以q+p+r 原本是mod 3 = 6 ,6可以除尽3,所以q+p+r 也是三的倍数

  

Ⅱ.若a mod 3 = 2

  只需把上面的讨论中1与2互换即可,是完全对称的

Code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a;
void solve()
{
scanf("%lld",&a);
vector<ll> bb[2];
for(int i=0;i<=60;i++)
if((a>>i)&1) bb[i&1].push_back(1LL<<i); //记录每一个1的位置和保存他的奇偶
if(a%3==0)
printf("1 %lld\n",a); //本身
else if(bb[1].size()+bb[0].size()<=2) return;//凑不出 (这里可能需要稍微仔细体会下)
else{
ll x,y;
int s = (a%3==2); //余数是2还是1
if(bb[s].size()){//如果原数里有我们需要的,可以直接减去的
x = a-bb[s][0];
if(bb[!s].size()) y = (bb[s][0]) + (bb[!s][0]); //凑3的两种方式
else y = a - bb[s][1];
}else{ //原数里没有余数
x = a-(bb[!s][0]+bb[!s][1]);
y = bb[!s][0]+bb[!s][1]+bb[!s][2];
}
printf("2 %lld %lld\n",x,y);
}
}
int main()
{
int T; cin>>T;
while(T--){
solve();
}
return 0;
}

参考自:
https://blog.csdn.net/sinat_40872274/article/details/97551579

https://blog.csdn.net/A_Pathfinder/article/details/97612078

(建议对着这两篇博客一起看)

2019牛客暑期多校训练营(第四场)D-triples I的更多相关文章

  1. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  2. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  3. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  4. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  5. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  6. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  7. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 2019牛客暑期多校训练营(第二场)J-Subarray(思维)

    >传送门< 前言 这题我前前后后看了三遍,每次都是把网上相关的博客和通过代码认真看了再思考,然并卵,最后终于第三遍也就是现在终于看懂了,其实懂了之后发现其实没有那么难,但是的的确确需要思维 ...

  9. 2019牛客暑期多校训练营(第一场)-A (单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/881/A 题意:给定两个长度均为n的数组a和b,求最大的p使得(a1,ap)和(b1,bp)等价,等价的定义为其任意 ...

  10. 2019牛客暑期多校训练营(第一场)A - Equivalent Prefixes(单调栈)

    题意 给定两个$n$个元素的数组$a,b$,它们的前$p$个元素构成的数组是"等价"的,求$p$的最大值."等价"的意思是在其任意一个子区间内的最小值相同. $ ...

随机推荐

  1. 【基础】1001_Hello,World!

    题目相关 [题目描述] 编写一个能够输出"Hello,World!"的程序,这个程序常常作为一个初学者接触一门新的编程语言所写的第一个程序,也经常用来测试开发.编译环境是否能够正常 ...

  2. Mac M1原生(ARM64)Golang dev&debug

    前言 通过本文最终实现了在M1芯片的Mac mini上的Goland的开发,并通过编译源码解决了无法DEBUG的问题. Go 1.16版将正式支持Apple Silicon M1芯片,即arm64架构 ...

  3. Docker Java 镜像基础(四)

    基于官方提供的centos 7.2.1511 基础镜像构建JDK 和tomcat 镜像,先构建JDK镜像,然后在基于JDK镜像构建tomcat镜像 构建 centos:latest 基础镜像: # 下 ...

  4. 【Spring】Spring中的Bean - 1、Baen配置

    Bean配置 简单记录-Java EE企业级应用开发教程(Spring+Spring MVC+MyBatis)-Spring中的Bean 什么是Spring中的Bean? Spring可以被看作是一个 ...

  5. 【Linux】sudo配置文件讲解

    一.sudo执行命令的流程 将当前用户切换到超级用户下,或切换到指定的用户下, 然后以超级用户或其指定切换到的用户身份执行命令,执行完成后,直接退回到当前用户. 具体工作过程如下: 当用户执行sudo ...

  6. 【Oracle】删除表空间

    删除表空间如果是 SQL> DROP TABLEPSACE XXXX; 是无法将数据文件一同都删除的 想要删除表空间和数据文件需要如下操作: SQL> drop tablespace XX ...

  7. libnum报错问题解决

    之前在使用python libnum库时报错 附上报错内容 Traceback (most recent call last) : File" D:/python file/ctf/RSA共 ...

  8. 强制删除 Terminating 状态的pod

    [root@k8s-master coredns]# kubectl get podNAME                     READY   STATUS        RESTARTS   ...

  9. 编年史:OI算法总结

    目录(按字典序) A --A* D --DFS找环 J --基环树 S --数位动规 --树形动规 T --Tarjan(e-DCC) --Tarjan(LCA) --Tarjan(SCC) --Ta ...

  10. CSS不用背景图片实现优惠券样式反圆角,凹圆角,反向半圆角,并且背景渐变

    日常开发过程中,特别是商城相关应用开发过程中,时常会遇到花里胡哨的设计图,比如优惠券样式,上图: 实现思路如下:     1.先写一个外容器,实现背景色渐变: Html: 1 <div clas ...