题意:连通各点最短距离,最小生成树。
You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area. 
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.

Input

The input file consists of a number of data sets. Each data set defines one required network. The first line of the set contains two integers: the first defines the number P of the given points, and the second the number R of given routes between the points. The following R lines define the given routes between the points, each giving three integer numbers: the first two numbers identify the points, and the third gives the length of the route. The numbers are separated with white spaces. A data set giving only one number P=0 denotes the end of the input. The data sets are separated with an empty line. 
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i. 

Output

For each data set, print one number on a separate line that gives the total length of the cable used for the entire designed network.

Sample Input

1 0

2 3
1 2 37
2 1 17
1 2 68 3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32 5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12 0

Sample Output

0
17
16
26

思路:两种算法kruskal算法还有prime。

方法一:kruskal算法

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
struct node
{
int u,v,w;
};
int n,m,pre[55];
node g[3000];
int init()
{
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&g[i].u,&g[i].v,&g[i].w);
}
}
bool cmp(node a,node b)
{
return a.w<b.w;
}
int find(int x)
{
return x==pre[x]?x:find(pre[x]);
}
void krus()
{
int sum=0;
for(int i=1;i<=n;i++)
pre[i]=i;
sort(g+1,g+1+m,cmp);
for(int i=1;i<=m;i++)
{
int tx=find(g[i].u);
int ty=find(g[i].v);
if(tx!=ty)
{
pre[tx]=ty;
sum+=g[i].w;
}
}
printf("%d\n",sum);
}
int main()
{
while(~scanf("%d",&n)&&n)
{
init();
krus();
}
}

F - F(最小生成树)的更多相关文章

  1. 请教下 f = f.replace('\n', '\r')这条没起作用

    !/usr/bin/env python -- coding: utf-8 -- import json import string import sys reload(sys) sys.setdef ...

  2. python中F/f表达式优于format()表达式

    F/f表达式可以解析任意类型的数据 具体实现,看下面示例: 1.解析变量 1 a = 10 3 b = 20 5 res1 = F"a+b的值:{a+b}" 7 print(res ...

  3. F - F HDU - 1173(二维化一维-思维)

    F - F HDU - 1173 一个邮递员每次只能从邮局拿走一封信送信.在一个二维的直角坐标系中,邮递员只能朝四个方向移动,正北.正东.正南.正西. 有n个需要收信的地址,现在需要你帮助找到一个地方 ...

  4. 前序遍历 排序 二叉搜索树 递归函数的数学定义 return 递归函数不能定义为内联函数 f(x0)由f(f(x0))决定

    遍历二叉树   traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化 1. 二叉树3个基本单元组成:根节点.左子树.右子树 以L.D.R ...

  5. Python格式化字符串(f,F,format,%)

    # 格式化字符串: 在字符串前加上 f 或者 F 使用 {变量名} 的形式来使用变量名的值 year = 2020 event = 'Referendum' value = f'Results of ...

  6. 【Wannafly挑战赛4】F 线路规划 倍增+Kruskal+归并

    [Wannafly挑战赛4]F 线路规划 题目描述 Q国的监察院是一个神秘的组织.这个组织掌握了整个帝国的地下力量,监察着Q国的每一个人.监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只 ...

  7. 如果你也会C#,那不妨了解下F#(6):面向对象编程之“类”

    前言 面向对象的思想已经非常成熟,而使用C#的程序员对面向对象也是非常熟悉,所以我就不对面向对象进行介绍了,在这篇文章中将只会介绍面向对象在F#中的使用. F#是支持面向对象的函数式编程语言,所以你用 ...

  8. 如果你也会C#,那不妨了解下F#(4):了解函数及常用函数

    函数式编程其实就是按照数学上的函数运算思想来实现计算机上的运算.虽然我们不需要深入了解数学函数的知识,但应该清楚函数式编程的基础是来自于数学. 例如数学函数\(f(x) = x^2+x\),并没有指定 ...

  9. HDU 1005 F(Contest #1)

    题意: 已知f[1] = f[2] = 1,输入三个数a,b,n,求f[n] = (a*f[n-1]+b*f[n-2])%7的结果 分析: f[n-1]和f[n-2]最多为7种情况(0,1,2,3,4 ...

随机推荐

  1. java反射-Method中的invoke方法的用法-以及函数式接口和lambda表达式

    作者最近研究框架底层代码过程中感觉自己基础不太牢固,于是写了一点案例,以防日后忘记 接口类:Animals 1 public interface Animals { 2 3 public void e ...

  2. 【渲染教程】使用3ds Max和ZBrush制作卡通风格的武器模型(上)

    克里斯蒂娜·马丁(CristinaMartín)介绍了她的项目灵剑(Spirit Sword)的制作过程,并详细的展示了使用3ds Max和ZBrush制作模型,纹理绘画和最终展示的过程. 介绍 克里 ...

  3. linux中常用服务的安装

    安装环境:centos7.5 配置离线yum源参考:https://blog.csdn.net/mayh554024289/article/details/54236336vi /etc/yum.co ...

  4. Python运维自动化psutil 模块详解(超级详细)

    psutil 模块 参考官方文档:https://pypi.org/project/psutil/ 一.psutil简介 psutil是一个开源且跨平台(http://code.google.com/ ...

  5. Linux学习笔记 | docker基本命令

    Docker的三大核心概念:镜像.容器.仓库 镜像:类似虚拟机的镜像.用俗话说就是安装文件. 容器:类似一个轻量级的沙箱,容器是从镜像创建应用运行实例,可以将其启动.开始.停止.删除.而这些容器都是相 ...

  6. mysql—if函数

    在mysql中if()函数的具体语法如下:IF(expr1,expr2,expr3),如果expr1的值为true,则返回expr2的值,如果expr1的值为false,则返回expr3的值. 开始实 ...

  7. 当spring 对象@Autowired 注入失败或者创建对象Bean失败、No qualifying bean/Error creating bean 的失败情形分析和解决方案

    错误信息 今天开发的过程中突然出现如下错误: Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: N ...

  8. SwiftUI 中一些和响应式状态有关的属性包装器的用途

    SwiftUI 借鉴了 React 等 UI 框架的概念,通过 state 的变化,对 View 进行响应式的渲染.主要通过 @State, @StateObject, @ObservedObject ...

  9. wmic 查看主板信息

    查看主板信息的一个命令:wmic baseboard get 当然在命令提示符里查看,真的很费劲,所以我们将命令格式化一下:wmic baseboard get /format:HFORM >c ...

  10. NOIP2020 T2 字符串匹配题解

    首先考虑O(n^3)的暴力怎么写. 显然,可以枚举字符串\(A\)+\(B\)的右端点,左端点显然是1,暴力判断是否能与后面的字符构成循环节,对于满足 \(k*(A+B)+C=\) 整个字符串\((k ...