本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py

这篇文章首先会简单介绍一下 PyTorch 中提供的图像分类的网络,然后重点介绍 ResNet 的使用,以及 ResNet 的源码。

模型概览

torchvision.model中,有很多封装好的模型。

可以分类 3 类:

  • 经典网络

    • alexnet
    • vgg
    • resnet
    • inception
    • densenet
    • googlenet
  • 轻量化网络
    • squeezenet
    • mobilenet
    • shufflenetv2
  • 自动神经结构搜索方法的网络
    • mnasnet

ResNet18 使用

ResNet 18 为例。

首先加载训练好的模型参数:

resnet18 = models.resnet18()

# 修改全连接层的输出
num_ftrs = resnet18.fc.in_features
resnet18.fc = nn.Linear(num_ftrs, 2) # 加载模型参数
checkpoint = torch.load(m_path)
resnet18.load_state_dict(checkpoint['model_state_dict'])

然后比较重要的是把模型放到 GPU 上,并且转换到`eval`模式:

resnet18.to(device)
resnet18.eval()

在 inference 时,主要流程如下:

  • 代码要放在with torch.no_grad():下。torch.no_grad()会关闭反向传播,可以减少内存、加快速度。

  • 根据路径读取图片,把图片转换为 tensor,然后使用unsqueeze_(0)方法把形状扩大为 $B \times C \times H \times W$,再把 tensor 放到 GPU 上 。

  • 模型的输出数据outputs的形状是 $1 \times 2$,表示 batch_size 为 1,分类数量为 2。torch.max(outputs,0)是返回outputs每一列最大的元素和索引,torch.max(outputs,1)是返回outputs每一行最大的元素和索引。

    这里使用_, pred_int = torch.max(outputs.data, 1)返回最大元素的索引,然后根据索引获得 label:pred_str = classes[int(pred_int)]

关键代码如下:

    with torch.no_grad():
for idx, img_name in enumerate(img_names): path_img = os.path.join(img_dir, img_name) # step 1/4 : path --> img
img_rgb = Image.open(path_img).convert('RGB') # step 2/4 : img --> tensor
img_tensor = img_transform(img_rgb, inference_transform)
img_tensor.unsqueeze_(0)
img_tensor = img_tensor.to(device) # step 3/4 : tensor --> vector
outputs = resnet18(img_tensor) # step 4/4 : get label
_, pred_int = torch.max(outputs.data, 1)
pred_str = classes[int(pred_int)]

全部代码如下所示:

import os
import time
import torch.nn as nn
import torch
import torchvision.transforms as transforms
from PIL import Image
from matplotlib import pyplot as plt
import torchvision.models as models
import enviroments
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu") # config
vis = True
# vis = False
vis_row = 4 norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225] inference_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
]) classes = ["ants", "bees"] def img_transform(img_rgb, transform=None):
"""
将数据转换为模型读取的形式
:param img_rgb: PIL Image
:param transform: torchvision.transform
:return: tensor
""" if transform is None:
raise ValueError("找不到transform!必须有transform对img进行处理") img_t = transform(img_rgb)
return img_t def get_img_name(img_dir, format="jpg"):
"""
获取文件夹下format格式的文件名
:param img_dir: str
:param format: str
:return: list
"""
file_names = os.listdir(img_dir)
# 使用 list(filter(lambda())) 筛选出 jpg 后缀的文件
img_names = list(filter(lambda x: x.endswith(format), file_names)) if len(img_names) < 1:
raise ValueError("{}下找不到{}格式数据".format(img_dir, format))
return img_names def get_model(m_path, vis_model=False): resnet18 = models.resnet18() # 修改全连接层的输出
num_ftrs = resnet18.fc.in_features
resnet18.fc = nn.Linear(num_ftrs, 2) # 加载模型参数
checkpoint = torch.load(m_path)
resnet18.load_state_dict(checkpoint['model_state_dict']) if vis_model:
from torchsummary import summary
summary(resnet18, input_size=(3, 224, 224), device="cpu") return resnet18 if __name__ == "__main__": img_dir = os.path.join(enviroments.hymenoptera_data_dir,"val/bees")
model_path = "./checkpoint_14_epoch.pkl"
time_total = 0
img_list, img_pred = list(), list() # 1. data
img_names = get_img_name(img_dir)
num_img = len(img_names) # 2. model
resnet18 = get_model(model_path, True)
resnet18.to(device)
resnet18.eval() with torch.no_grad():
for idx, img_name in enumerate(img_names): path_img = os.path.join(img_dir, img_name) # step 1/4 : path --> img
img_rgb = Image.open(path_img).convert('RGB') # step 2/4 : img --> tensor
img_tensor = img_transform(img_rgb, inference_transform)
img_tensor.unsqueeze_(0)
img_tensor = img_tensor.to(device) # step 3/4 : tensor --> vector
time_tic = time.time()
outputs = resnet18(img_tensor)
time_toc = time.time() # step 4/4 : visualization
_, pred_int = torch.max(outputs.data, 1)
pred_str = classes[int(pred_int)] if vis:
img_list.append(img_rgb)
img_pred.append(pred_str) if (idx+1) % (vis_row*vis_row) == 0 or num_img == idx+1:
for i in range(len(img_list)):
plt.subplot(vis_row, vis_row, i+1).imshow(img_list[i])
plt.title("predict:{}".format(img_pred[i]))
plt.show()
plt.close()
img_list, img_pred = list(), list() time_s = time_toc-time_tic
time_total += time_s print('{:d}/{:d}: {} {:.3f}s '.format(idx + 1, num_img, img_name, time_s)) print("\ndevice:{} total time:{:.1f}s mean:{:.3f}s".
format(device, time_total, time_total/num_img))
if torch.cuda.is_available():
print("GPU name:{}".format(torch.cuda.get_device_name()))

总结一下 inference 阶段需要注意的事项:

  • 确保 model 处于 eval 状态,而非 trainning 状态
  • 设置 torch.no_grad(),减少内存消耗,加快运算速度
  • 数据预处理需要保持一致,比如 RGB 或者 rBGR

残差连接

以 ResNet 为例:

一个残差块有2条路径 $F(x)$ 和 $x$,$F(x)$ 路径拟合残差,不妨称之为残差路径;$x$ 路径为`identity mapping`恒等映射,称之为`shortcut`。图中的⊕为`element-wise addition`,要求参与运算的 $F(x)$ 和 $x$ 的尺寸要相同。

shortcut 路径大致可以分成 2 种,取决于残差路径是否改变了feature map数量和尺寸。

  • 一种是将输入x原封不动地输出。
  • 另一种则需要经过 $1×1$ 卷积来升维或者降采样,主要作用是将输出与 $F(x)$ 路径的输出保持shape一致,对网络性能的提升并不明显。

两种结构如下图所示:

`ResNet` 中,使用了上面 2 种 `shortcut`。

网络结构

ResNet 有很多变种,包括 ResNet 18ResNet 34ResNet 50ResNet 101ResNet 152,网络结构对比如下:

`ResNet` 的各个变种,数据处理大致流程如下:

  • 输入的图片形状是 $3 \times 224 \times 224$。
  • 图片经过 conv1 层,输出图片大小为 $ 64 \times 112 \times 112$。
  • 图片经过 max pool 层,输出图片大小为 $ 64 \times 56 \times 56 $。
  • 图片经过 conv2 层,输出图片大小为 $ 64 \times 56 \times 56$。(注意,图片经过这个 layer, 大小是不变的)
  • 图片经过 conv3 层,输出图片大小为 $ 128 \times 28 \times 28$。
  • 图片经过 conv4 层,输出图片大小为 $ 256 \times 14 \times 14$。
  • 图片经过 conv5 层,输出图片大小为 $ 512 \times 7 \times 7$。
  • 图片经过 avg pool 层,输出大小为 $ 512 \times 1 \times 1$。
  • 图片经过 fc 层,输出维度为 $ num_classes$,表示每个分类的 logits

下面,我们称每个 conv 层为一个 layer(第一个 conv 层就是一个卷积层,因此第一个 conv 层除外)。

其中 ResNet 18ResNet 34 的每个 layer 由多个 BasicBlock 组成,只是每个 layer 里堆叠的 BasicBlock 数量不一样。

ResNet 50ResNet 101ResNet 152 的每个 layer 由多个 Bottleneck 组成,只是每个 layer 里堆叠的 Bottleneck 数量不一样。

源码分析

我们来看看各个 ResNet 的源码,首先从构造函数开始。

构造函数

ResNet 18

resnet18 的构造函数如下。

[2, 2, 2, 2] 表示有 4 个 layer,每个 layer 中有 2 个 BasicBlock

conv1为 1 层,conv2conv3conv4conv5均为 4 层(每个 layer 有 2 个 BasicBlock,每个 BasicBlock 有 2 个卷积层),总共为 16 层,最后一层全连接层,$ 总层数 = 1+ 4 \times 4 + 1 = 18$,依此类推。

def resnet18(pretrained=False, progress=True, **kwargs):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)

ResNet 34

resnet 34 的构造函数如下。

[3, 4, 6, 3] 表示有 4 个 layer,每个 layerBasicBlock 数量分别为 3, 4, 6, 3。

def resnet34(pretrained=False, progress=True, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)

ResNet 50

resnet 34 的构造函数如下。

[3, 4, 6, 3] 表示有 4 个 layer,每个 layerBottleneck 数量分别为 3, 4, 6, 3。

def resnet50(pretrained=False, progress=True, **kwargs):
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)

依此类推,ResNet 101ResNet 152 也是由多个 layer 组成的。

_resnet()

上面所有的构造函数中,都调用了 _resnet() 方法来创建网络,下面来看看 _resnet() 方法。

def _resnet(arch, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
# 加载预训练好的模型参数
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)
return model

可以看到,在 _resnet() 方法中,又调用了 ResNet() 方法创建模型,然后加载训练好的模型参数。

ResNet()

首先来看 ResNet() 方法的构造函数。

构造函数

构造函数的重要参数如下:

  • block:每个 layer 里面使用的 block,可以是 BasicBlock Bottleneck
  • num_classes:分类数量,用于构建最后的全连接层。
  • layers:一个 list,表示每个 layerblock 的数量。

构造函数的主要流程如下:

  • 判断是否传入 norm_layer,没有传入,则使用 BatchNorm2d

  • 判断是否传入孔洞卷积参数 replace_stride_with_dilation,如果不指定,则赋值为 [False, False, False],表示不使用孔洞卷积。

  • 读取分组卷积的参数 groupswidth_per_group

  • 然后真正开始构造网络。

  • conv1 层的结构是 Conv2d -> norm_layer -> ReLU

    self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
    self.bn1 = norm_layer(self.inplanes)
    self.relu = nn.ReLU(inplace=True)
  • conv2 层的代码如下,对应于 layer1,这个 layer 的参数没有指定 stride,默认 stride=1,因此这个 layer 不会改变图片大小:

    self.layer1 = self._make_layer(block, 64, layers[0])
  • conv3 层的代码如下,对应于 layer2(注意这个 layer 指定 stride=2,会降采样,详情看下面 _make_layer 的讲解):

    self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
  • conv4 层的代码如下,对应于 layer3(注意这个 layer 指定 stride=2,会降采样,详情看下面 _make_layer 的讲解):

    self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
    dilate=replace_stride_with_dilation[1])
  • conv5 层的代码如下,对应于 layer4(注意这个 layer 指定 stride=2,会降采样,详情看下面 _make_layer 的讲解):

    self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
    dilate=replace_stride_with_dilation[2])
  • 接着是 AdaptiveAvgPool2d 层和 fc 层。

  • 最后是网络参数的初始:

    • 卷积层采用 kaiming_normal_() 初始化方法。
    • bn 层和 GroupNorm 层初始化为 weight=1bias=0
    • 其中每个 BasicBlockBottleneck 的最后一层 bnweight=0,可以提升准确率 0.2~0.3%。

完整的构造函数代码如下:

    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
# 使用 bn 层
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
# 对应于 conv1
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# 对应于 conv2
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
# 对应于 conv3
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
对应于 conv4
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
对应于 conv5
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)

forward()

ResNet 中,网络经过层层封装,因此forward() 方法非常简洁。

数据变换大致流程如下:

  • 输入的图片形状是 $3 \times 224 \times 224$。
  • 图片经过 conv1 层,输出图片大小为 $ 64 \times 112 \times 112$。
  • 图片经过 max pool 层,输出图片大小为 $ 64 \times 56 \times 56 $。
  • 对于 ResNet 18ResNet 34 (使用 BasicBlock):
    • 图片经过 conv2 层,对应于 layer1,输出图片大小为 $ 64 \times 56 \times 56$。(注意,图片经过这个 layer, 大小是不变的)
    • 图片经过 conv3 层,对应于 layer2,输出图片大小为 $ 128 \times 28 \times 28$。
    • 图片经过 conv4 层,对应于 layer3,输出图片大小为 $ 256 \times 14 \times 14$。
    • 图片经过 conv5 层,对应于 layer4,输出图片大小为 $ 512 \times 7 \times 7$。
    • 图片经过 avg pool 层,输出大小为 $ 512 \times 1 \times 1$。
  • 对于 ResNet 50ResNet 101ResNet 152(使用 Bottleneck):
    • 图片经过 conv2 层,对应于 layer1,输出图片大小为 $ 256 \times 56 \times 56$。(注意,图片经过这个 layer, 大小是不变的)
    • 图片经过 conv3 层,对应于 layer2,输出图片大小为 $ 512 \times 28 \times 28$。
    • 图片经过 conv4 层,对应于 layer3,输出图片大小为 $ 1024 \times 14 \times 14$。
    • 图片经过 conv5 层,对应于 layer4,输出图片大小为 $ 2048 \times 7 \times 7$。
    • 图片经过 avg pool 层,输出大小为 $ 2048 \times 1 \times 1$。
  • 图片经过 fc 层,输出维度为 $ num_classes$,表示每个分类的 logits
    def _forward_impl(self, x):
# See note [TorchScript super()] # conv1
# x: [3, 224, 224] -> [64, 112, 112]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x) # conv2
# x: [64, 112, 112] -> [64, 56, 56]
x = self.maxpool(x) # x: [64, 56, 56] -> [64, 56, 56]
# x 经过第一个 layer, 大小是不变的
x = self.layer1(x) # conv3
# x: [64, 56, 56] -> [128, 28, 28]
x = self.layer2(x) # conv4
# x: [128, 28, 28] -> [256, 14, 14]
x = self.layer3(x) # conv5
# x: [256, 14, 14] -> [512, 7, 7]
x = self.layer4(x) # x: [512, 7, 7] -> [512, 1, 1]
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x) return x

在构造函数中可以看到,上面每个 layer 都是使用 _make_layer() 方法来创建层的,下面来看下 _make_layer() 方法。

_make_layer()

_make_layer()方法的参数如下:

  • block:每个 layer 里面使用的 block,可以是 BasicBlockBottleneck
  • planes:输出的通道数
  • blocks:一个整数,表示该层 layer 有多少个 block
  • stride:第一个 block 的卷积层的 stride,默认为 1。注意,只有在每个 layer 的第一个 block 的第一个卷积层使用该参数。
  • dilate:是否使用孔洞卷积。

主要流程如下:

  • 判断孔洞卷积,计算 previous_dilation 参数。

  • 判断 stride 是否为 1,输入通道和输出通道是否相等。如果这两个条件都不成立,那么表明需要建立一个 1 X 1 的卷积层,来改变通道数和改变图片大小。具体是建立 downsample 层,包括 conv1x1 -> norm_layer

  • 建立第一个 block,把 downsample 传给 block 作为降采样的层,并且 stride 也使用传入的 stride(stride=2)。后面我们会分析 downsample 层在 BasicBlockBottleneck 中,具体是怎么用的

  • 改变通道数self.inplanes = planes * block.expansion

    • BasicBlock 里,expansion=1,因此这一步不会改变通道数
    • Bottleneck 里,expansion=4,因此这一步会改变通道数
  • 图片经过第一个 block后,就会改变通道数和图片大小。接下来 for 循环添加剩下的 block。从第 2 个 block 起,输入和输出通道数是相等的,因此就不用传入 downsamplestride(那么 blockstride 默认使用 1,下面我们会分析 BasicBlockBottleneck 的源码)。

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
# 首先判断 stride 是否为1,输入通道和输出通道是否相等。不相等则使用 1 X 1 的卷积改变大小和通道
#作为 downsample
# 在 Resnet 中,每层 layer 传入的 stride =2
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
) layers = []
# 然后添加第一个 basic block,把 downsample 传给 BasicBlock 作为降采样的层。
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
# 修改输出的通道数
self.inplanes = planes * block.expansion
# 继续添加这个 layer 里接下来的 BasicBlock
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer)) return nn.Sequential(*layers)

下面来看 BasicBlockBottleneck 的源码。

BasicBlock

构造函数

BasicBlock 构造函数的主要参数如下:

  • inplanes:输入通道数。

  • planes:输出通道数。

  • stride:第一个卷积层的 stride

  • downsample:从 layer 中传入的 downsample 层。

  • groups:分组卷积的分组数,使用 1

  • base_width:每组卷积的通道数,使用 64

  • dilation:孔洞卷积,为 1,表示不使用 孔洞卷积

主要流程如下:

  • 首先判断是否传入了 norm_layer 层,如果没有,则使用 BatchNorm2d
  • 校验参数:groups == 1base_width == 64dilation == 1。也就是说,在 BasicBlock 中,不使用孔洞卷积和分组卷积。
  • 定义第 1 组 conv3x3 -> norm_layer -> relu,这里使用传入的 strideinplanes。(如果是 layer2layer3layer4 里的第一个 BasicBlock,那么 stride=2,这里会降采样和改变通道数)。
  • 定义第 2 组 conv3x3 -> norm_layer -> relu,这里不使用传入的 stride (默认为 1),输入通道数和输出通道数使用planes,也就是不需要降采样和改变通道数
class BasicBlock(nn.Module):
expansion = 1
__constants__ = ['downsample'] def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride

forward()

forward() 方法的主要流程如下:

  • x 赋值给 identity,用于后面的 shortcut 连接。
  • x 经过第 1 组 conv3x3 -> norm_layer -> relu,如果是 layer2layer3layer4 里的第一个 BasicBlock,那么 stride=2,第一个卷积层会降采样。
  • x 经过第 1 组 conv3x3 -> norm_layer,得到 out
  • 如果是 layer2layer3layer4 里的第一个 BasicBlock,那么 downsample 不为空,会经过 downsample 层,得到 identity
  • 最后将 identityout 相加,经过 relu ,得到输出。

注意,2 个卷积层都需要经过 relu 层,但它们使用的是同一个 relu 层。

    def forward(self, x):
identity = x
# 如果是 layer2,layer3,layer4 里的第一个 BasicBlock,第一个卷积层会降采样
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out) out = self.conv2(out)
out = self.bn2(out) if self.downsample is not None:
identity = self.downsample(x) out += identity
out = self.relu(out) return out

Bottleneck

构造函数

参数如下:

  • inplanes:输入通道数。
  • planes:输出通道数。
  • stride:第一个卷积层的 stride
  • downsample:从 layer 中传入的 downsample 层。
  • groups:分组卷积的分组数,使用 1
  • base_width:每组卷积的通道数,使用 64
  • dilation:孔洞卷积,为 1,表示不使用 孔洞卷积

主要流程如下:

  • 首先判断是否传入了 norm_layer 层,如果没有,则使用 BatchNorm2d
  • 计算 width,等于传入的 planes,用于中间的 $ 3 \times 3 $ 卷积。
  • 定义第 1 组 conv1x1 -> norm_layer,这里不使用传入的 stride,使用 width,作用是进行降维,减少通道数。
  • 定义第 2 组 conv3x3 -> norm_layer,这里使用传入的 stride,输入通道数和输出通道数使用width。(如果是 layer2layer3layer4 里的第一个 Bottleneck,那么 stride=2,这里会降采样)。
  • 定义第 3 组 conv1x1 -> norm_layer,这里不使用传入的 stride,使用 planes * self.expansion,作用是进行升维,增加通道数。
class Bottleneck(nn.Module):
expansion = 4
__constants__ = ['downsample'] def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d # base_width = 64
# groups =1
# width = planes
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
# 1x1 的卷积是为了降维,减少通道数
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
# 3x3 的卷积是为了改变图片大小,不改变通道数
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
# 1x1 的卷积是为了升维,增加通道数,增加到 planes * 4
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

forward()

forward() 方法的主要流程如下:

  • x 赋值给 identity,用于后面的 shortcut 连接。
  • x 经过第 1 组 conv1x1 -> norm_layer -> relu,作用是进行降维,减少通道数。
  • x 经过第 2 组 conv3x3 -> norm_layer -> relu。如果是 layer2layer3layer4 里的第一个 Bottleneck,那么 stride=2,第一个卷积层会降采样。
  • x 经过第 1 组 conv1x1 -> norm_layer -> relu,作用是进行降维,减少通道数。
  • 如果是 layer2layer3layer4 里的第一个 Bottleneck,那么 downsample 不为空,会经过 downsample 层,得到 identity
  • 最后将 identityout 相加,经过 relu ,得到输出。

注意,3 个卷积层都需要经过 relu 层,但它们使用的是同一个 relu 层。

    def forward(self, x):
identity = x out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out) out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out) out = self.conv3(out)
out = self.bn3(out) if self.downsample is not None:
identity = self.downsample(x) out += identity
out = self.relu(out) return out

总结

最后,总结一下。

  • BasicBlock 中有 1 个 $3 \times 3 $ 卷积层,如果是 layer 的第一个 BasicBlock,那么第一个卷积层的 stride=2,作用是进行降采样。
  • Bottleneck 中有 2 个 $1 \times 1 $ 卷积层, 1 个 $3 \times 3 $ 卷积层。先经过第 1 个 $1 \times 1 $ 卷积层,进行降维,然后经过 $3 \times 3 $ 卷积层(如果是 layer 的第一个 Bottleneck,那么 $3 \times 3 $ 卷积层的 stride=2,作用是进行降采样),最后经过 $1 \times 1 $ 卷积层,进行升维 。

ResNet 18 图解

layer1

下面是 ResNet 18 ,使用的是 BasicBlocklayer1,特点是没有进行降采样,卷积层的 stride = 1,不会降采样。在进行 shortcut 连接时,也没有经过 downsample 层。

layer2,layer3,layer4

layer2layer3layer4 的结构图如下,每个 layer 包含 2 个 BasicBlock,但是第 1 个 BasicBlock 的第 1 个卷积层的 stride = 2,会进行降采样。在进行 shortcut 连接时,会经过 downsample 层,进行降采样和降维

ResNet 50 图解

layer1

layer1 中,首先第一个 Bottleneck 只会进行升维,不会降采样。shortcut 连接前,会经过 downsample 层升维处理。第二个 Bottleneckshortcut 连接不会经过 downsample 层。

layer2,layer3,layer4

layer2layer3layer4 的结构图如下,每个 layer 包含多个 Bottleneck,但是第 1 个 Bottleneck 的 $ 3 \times 3 $ 卷积层的 stride = 2,会进行降采样。在进行 shortcut 连接时,会经过 downsample 层,进行降采样和降维

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

PyTorch ResNet 使用与源码解析的更多相关文章

  1. [源码解析] PyTorch 分布式(3) ----- DataParallel(下)

    [源码解析] PyTorch 分布式(3) ----- DataParallel(下) 目录 [源码解析] PyTorch 分布式(3) ----- DataParallel(下) 0x00 摘要 0 ...

  2. [源码解析] PyTorch分布式优化器(3)---- 模型并行

    [源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 ...

  3. [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行

    [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行 目录 [源码解析] PyTorch 分布式(18) --- 使用 RPC 的分布式管道并行 0x00 摘要 0x0 ...

  4. [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler

    [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampl ...

  5. [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader

    [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 ...

  6. [源码解析] PyTorch 流水线并行实现 (1)--基础知识

    [源码解析] PyTorch 流水线并行实现 (1)--基础知识 目录 [源码解析] PyTorch 流水线并行实现 (1)--基础知识 0x00 摘要 0x01 历史 1.1 GPipe 1.2 t ...

  7. [源码解析] PyTorch 流水线并行实现 (2)--如何划分模型

    [源码解析] PyTorch 流水线并行实现 (2)--如何划分模型 目录 [源码解析] PyTorch 流水线并行实现 (2)--如何划分模型 0x00 摘要 0x01 问题 0x01 自动平衡 1 ...

  8. [源码解析] PyTorch 流水线并行实现 (3)--切分数据和运行时系统

    [源码解析] PyTorch 流水线并行实现 (3)--切分数据和运行时系统 目录 [源码解析] PyTorch 流水线并行实现 (3)--切分数据和运行时系统 0x00 摘要 0x01 分割小批次 ...

  9. [源码解析] PyTorch 流水线并行实现 (4)--前向计算

    [源码解析] PyTorch 流水线并行实现 (4)--前向计算 目录 [源码解析] PyTorch 流水线并行实现 (4)--前向计算 0x00 摘要 0x01 论文 1.1 引论 1.1.1 数据 ...

随机推荐

  1. 初步理解@Transactional注解

    在SSM项目中,经常在业务层的类或者方法上看到@Transactional注解,只是知道这个注解的作用是进行事务管理,但是具体有哪些属性,在什么情况下进行回滚,确是不那么清楚.所以在网上看了一些视频和 ...

  2. “随手记”开发记录day01

    今天进行了第二次团队会议,并且开始了“随手记”APP的开发. 今天,我们的完成了登陆.注册页面,开始完成记账部分页面和个人信息页面. 完成页面如下:

  3. Android Studio--家庭记账本(一)

    今天通过观看视频,根据老师所讲内容,编译代码.实现了Android Studio记账本里面的增加功能 源代码如下: CostBean.java: package com.example.family; ...

  4. 申请支付宝app支付签约综合评分不足,拒绝不通过快速强开通支付宝App支付强开,强开支付宝App支付产品权限!

    一.如何开通支付宝App支付 正常来说,按照官方的指引要求填写相关资料,即可开通支付宝手机网站支付.但是,更多的时候我们的申请都会碰到一些阻力,常见的阻力就是“系统综合评估签约条件不满足,谢谢您的支持 ...

  5. Spring事务专题(四)Spring中事务的使用、抽象机制及模拟Spring事务实现

    Spring中事务的使用示例.属性及使用中可能出现的问题 前言 本专题大纲如下: 对于专题大纲我又做了调整哈,主要是希望专题的内容能够更丰富,更加详细,本来是想在源码分析的文章中附带讲一讲事务使用中的 ...

  6. java 基本类型包装类

    一 基本类型包装类 1.包装类概述 Java中提供了相应的对象来解决实现字符串与基本数据之间转换问题,基本数据类 型对象包装类:java将基本数据类型值封装成了对象. 8种基本类型对应的包装类如下: ...

  7. C#LeetCode刷题之#169-求众数(Majority Element)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4048 访问. 给定一个大小为 n 的数组,找到其中的众数.众数是 ...

  8. 靶机练习 - ATT&CK红队实战靶场 - 1. 环境搭建和漏洞利用

    最近某个公众号介绍了网上的一套环境,这个环境是多个Windows靶机组成的,涉及到内网渗透,正好Windows和内网渗透一直没怎么接触过,所以拿来学习下. 下载地址:http://vulnstack. ...

  9. Android 开发学习进程0.19 webview 的使用

    Android 中的webview android 中的webview是可以在app内部打开HTML等的网页,不必再打开浏览器,有两种实现方法,即webviewclient webChromeclie ...

  10. 谈谈 Qt4 中文乱码的解决

    本文只描述Qt4的解决方法,Qt5没有尝试过,不做讨论.网上关于这个话题一搜一大堆,基本无外乎字符集编码的理论,看不明白.直接上代码吧! #include "widget.h" # ...