P3355 骑士共存问题

题意:

  也是一个棋盘,规则是“马”不能相互打到。

思路:

  奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n。

  然后dinic 要用当前弧优化。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = ;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/
const int maxn = ;
int mp[maxn][maxn]; struct E
{
int u,v,val;
int nxt;
}edge[ * maxn*maxn];
int gtot = ,head[maxn*maxn];
void addedge(int u,int v,int val){
edge[gtot].u = u;
edge[gtot].v = v;
edge[gtot].val = val;
edge[gtot].nxt = head[u];
head[u] = gtot++; edge[gtot].u = v;
edge[gtot].v = u;
edge[gtot].val = ;
edge[gtot].nxt = head[v];
head[v] = gtot++;
}
int nx[][] = {
{-,-}, {-,-},{-, },{-,},{,-},{,-},{,},{,}
};
int n,m;
int cal(int i,int j){
return (i-)*n + j;
} int dis[maxn*maxn],cur[maxn*maxn];
bool bfs(int s,int t){
memset(dis, inf, sizeof(dis));
for(int i=s; i<=t; i++) cur[i] = head[i];
queue<int>que;
que.push(s);
dis[s] = ;
while(!que.empty()){
int u = que.front(); que.pop();
for(int i= head[u]; ~i; i = edge[i].nxt){
int v = edge[i].v;
if(edge[i].val > && dis[v] > dis[u] + ){
dis[v] = dis[u] + ;
que.push(v);
}
}
}
return dis[t] < inf;
} int dfs(int u,int t,int maxflow){
if(u == t || maxflow == ) return maxflow; for(int i=cur[u]; ~i; i = edge[i].nxt){
cur[u] = i;
int v = edge[i].v;
if(edge[i].val > && dis[v] == dis[u] + ){
int f = dfs(v, t, min(maxflow, edge[i].val)); if(f > ){
edge[i].val -= f;
edge[i^].val += f;
return f;
}
} }
return ;
}
int dinic(int s,int t){
int flow = ;
while(bfs(s,t)){
while(int f = dfs(s,t,inf)) flow += f;
}
return flow;
}
int main(){
memset(head, -, sizeof(head));
scanf("%d%d", &n, &m);
int s = , t = n*n+;
int sum = n * n;
for(int i=; i<=m; i++){
int x,y;
scanf("%d%d", &x, &y);
mp[x][y] = ;
sum--;
}
for(int i=; i<=n; i++){
for(int j=; j<=n; j++) {
if((i+j)% == ) {
if(mp[i][j]) addedge(s, cal(i,j), );
else addedge(s, cal(i, j), );
}
else {
if(mp[i][j]) addedge(cal(i,j),t, );
else addedge(cal(i,j), t, );
}
}
} for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
if((i+j)% == ) continue;
for(int k=; k<; k++){
int x = i + nx[k][];
int y = j + nx[k][];
if(x < || x > n || y < || y > n) continue;
addedge(cal(i,j), cal(x,y),inf);
}
}
}
cout<<sum - dinic(s, t)<<endl;
return ;
}

P3355 骑士共存问题 二分建图 + 当前弧优化dinic的更多相关文章

  1. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  2. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

  3. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  4. 「CODVES 1922 」骑士共存问题(二分图的最大独立集|网络流)&dinic

    首先是题目链接  http://codevs.cn/problem/1922/ 结果发现题目没图(心情复杂 然后去网上扒了一张图 大概就是这样了. 如果把每个点和它可以攻击的点连一条边,那问题就变成了 ...

  5. hdu 3572 Task Schedule(最大流&amp;&amp;建图经典&amp;&amp;dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  6. P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图

    展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...

  7. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  8. hdu1815 2sat + 二分 + 建图

    题意:       给你两个总部,s1 ,s2,和n个点,任意两点之间都是通过这个总部相连的,其中有一些点不能连在同一个总部上,有一些点可以连接在同一个总部上,总部和总部之间可以直接连接,就是假如a, ...

  9. 【Luogu】P3355骑士共存问题(最小割)

    题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...

随机推荐

  1. .NET Core on K8S学习实践系列文章索引(Draft版)

    一.关于这个系列 自从去年(2018年)底离开工作了3年的M公司加入X公司之后,开始了ASP.NET Core的实践,包括微服务架构与容器化等等.我们的实践是渐进的,当我们的微服务数量到了一定值时,发 ...

  2. 使用jvisualvm.exe工具远程监视tomcat的线程运行状态

    一.简述 在web项目中,常使用tomcat作为web容器.代码编写的时候,由于业务需要,也常会使用线程机制.在系统运行一段时间之后,若出现响应慢或线程之间出现死锁的情况,要查出问题所在,需要使用jd ...

  3. 七牛云qshell工具定时备份空间文件到本地

    qshell 是利用七牛文档上公开的 API实现的一个方便开发者测试和使用七牛API服务的命令行工具,使用该工具可以实现很多的功能,今天就分享一下利用qshell定时备份空间文件到本地 1.下载qsh ...

  4. ext container的使用的场景

    container 是 panel 简化,他称之为容器,而panel则是面板. 如果不需要类似Ext.panel.Panel,Ext.window.Window和Ext.tab.Panel 等功能,则 ...

  5. 图解SSH隧道功能

    SSH能够对SSH客户端与服务器端之间的网络通信提供加密功能,而且SSH的端口转发功能还能将其它TCP端口的网络数据通过SSH连接来转发,并且自动提供相应的加密和解密服务,这一过程也被称为“隧道”(t ...

  6. charles(version4.2.1)抓包手机数据

    点击菜单栏的Proxy项,选择Proxy Settings. 设置HTTP Proxy的Port. 勾选透明代理Enable transparent HTTP proxying,也可不勾选. 设置代理 ...

  7. 如何获取app中的toast

    前言 Toast是什么呢?在这个手机飞速发展的时代,app的种类也越来越多,那们在日常生活使用中,经常会发现,当你在某个app的输入框输入非法字符或者非法执行某个流程时,经常看到系统会给你弹出一个黑色 ...

  8. imageloader+图片压缩

    public class MainActivity extends AppCompatActivity { private ImageView ivIcon; @Override protected ...

  9. Flink 源码解析 —— 如何获取 JobGraph?

    JobGraph https://t.zsxq.com/naaMf6y 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 F ...

  10. 把Python项目打包成exe文件

    我们很多时候,写好的程序需要打包成.exe文件才可以发给客户,那么今天我就来谈一谈,如何将一个写好的Python程序打包成exe文件! 首先,我们我们使用到的工具是python 3.7 和 Pyins ...