xgboost保险赔偿预测
XGBoost解决xgboost保险赔偿预测
import xgboost as xgb
import pandas as pd
import numpy as np
import pickle
import sys
import matplotlib.pyplot as plt
from sklearn.metrics import mean_absolute_error, make_scorer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV,KFold, train_test_split
from scipy.sparse import csr_matrix, hstack
from xgboost import XGBRegressor
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
# This may raise an exception in earlier versions of Jupyter
%config InlineBackend.figure_format = 'retina'
数据预处理
train = pd.read_csv('train.csv')
train['log_loss'] = np.log(train['loss'])
数据分成连续和离散特征
features = [x for x in train.columns if x not in ['id','loss', 'log_loss']]
cat_features = [x for x in train.select_dtypes(
include=['object']).columns if x not in ['id','loss', 'log_loss']]
num_features = [x for x in train.select_dtypes(
exclude=['object']).columns if x not in ['id','loss', 'log_loss']]
print ("Categorical features:", len(cat_features))
print ("Numerical features:", len(num_features))
Categorical features: 116
Numerical features: 14
And use a label encoder for categorical features:
ntrain = train.shape[0]
train_x = train[features]
train_y = train['log_loss']
for c in range(len(cat_features)):
train_x[cat_features[c]] = train_x[cat_features[c]].astype('category').cat.codes print ("Xtrain:", train_x.shape)
print ("ytrain:", train_y.shape)
Xtrain: (188318, 130)
ytrain: (188318,)
简单的XGBoost 模型
首先,我们训练一个基本的xgboost模型,然后进行参数调节通过交叉验证来观察结果的变换,使用平均绝对误差来衡量
mean_absolute_error(np.exp(y), np.exp(yhat))。
xgboost 自定义了一个数据矩阵类 DMatrix,会在训练开始时进行一遍预处理,从而提高之后每次迭代的效率
def xg_eval_mae(yhat, dtrain):
y = dtrain.get_label()
return 'mae', mean_absolute_error(np.exp(y), np.exp(yhat))
Model
# 将数据进行转化成xgboost支持的数据格式(效率问题)
dtrain = xgb.DMatrix(train_x, train['log_loss'])
Xgboost参数
- 'booster':'gbtree',
- 'objective': 'multi:softmax', 多分类的问题
- 'num_class':10, 类别数,与 multisoftmax 并用
- 'gamma':损失下降多少才进行分裂
- 'max_depth':12, 构建树的深度,越大越容易过拟合
- 'lambda':2, 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
- 'subsample':0.7, 随机采样训练样本
- 'colsample_bytree':0.7, 生成树时进行的列采样
- 'min_child_weight':3, 孩子节点中最小的样本权重和。如果一个叶子节点的样本权重和小于min_child_weight则拆分过程结束
- 'silent':0 ,设置成1则没有运行信息输出,最好是设置为0.
- 'eta': 0.007, 如同学习率
- 'seed':1000,随即种子
- 'nthread':7, cpu 线程数
xgb_params = {
'seed': 0,
'eta': 0.1,
'colsample_bytree': 0.5,
'silent': 1,
'subsample': 0.5,
'objective': 'reg:linear',
'max_depth': 5,
'min_child_weight': 3
}
使用交叉验证 xgb.cv
%%time
bst_cv1 = xgb.cv(xgb_params, dtrain, num_boost_round=50, nfold=3, seed=0,
feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)
print ('CV score:', bst_cv1.iloc[-1,:]['test-mae-mean'])
CV score: 1220.1099446666667
Wall time: 29.7 s
我们得到了第一个基准结果:MAE=1218.9
plt.figure()
bst_cv1[['train-mae-mean', 'test-mae-mean']].plot()
我们的第一个基础模型:
- 没有发生过拟合
- 只建立了50个树模型
%%time
#建立100个树模型
bst_cv2 = xgb.cv(xgb_params, dtrain, num_boost_round=100,
nfold=3, seed=0, feval=xg_eval_mae, maximize=False,
early_stopping_rounds=10)
print ('CV score:', bst_cv2.iloc[-1,:]['test-mae-mean'])
fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,4)
ax1.set_title('100 rounds of training')
ax1.set_xlabel('Rounds')
ax1.set_ylabel('Loss')
ax1.grid(True)
ax1.plot(bst_cv2[['train-mae-mean', 'test-mae-mean']])
ax1.legend(['Training Loss', 'Test Loss'])
ax2.set_title('60 last rounds of training')
ax2.set_xlabel('Rounds')
ax2.set_ylabel('Loss')
ax2.grid(True)
ax2.plot(bst_cv2.iloc[40:][['train-mae-mean', 'test-mae-mean']])
ax2.legend(['Training Loss', 'Test Loss'])
有那么一丢丢过拟合,现在还没多大事
我们得到了新的纪录 MAE = 1171.77 比第一次的要好 (1218.9). 接下来我们要改变其他参数了。
XGBoost 参数调节
- Step 1: 选择一组初始参数
- Step 2: 改变
max_depth和min_child_weight.
- Step 3: 调节
gamma降低模型过拟合风险.
- Step 4: 调节
subsample和colsample_bytree改变数据采样策略.
- Step 5: 调节学习率
eta.
class XGBoostRegressor(object):
def __init__(self, **kwargs):
self.params = kwargs
if 'num_boost_round' in self.params:
self.num_boost_round = self.params['num_boost_round']
self.params.update({'silent': 1, 'objective': 'reg:linear', 'seed': 0}) def fit(self, x_train, y_train):
dtrain = xgb.DMatrix(x_train, y_train)
self.bst = xgb.train(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
feval=xg_eval_mae, maximize=False) def predict(self, x_pred):
dpred = xgb.DMatrix(x_pred)
return self.bst.predict(dpred) def kfold(self, x_train, y_train, nfold=5):
dtrain = xgb.DMatrix(x_train, y_train)
cv_rounds = xgb.cv(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
nfold=nfold, feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)
return cv_rounds.iloc[-1,:] def plot_feature_importances(self):
feat_imp = pd.Series(self.bst.get_fscore()).sort_values(ascending=False)
feat_imp.plot(title='Feature Importances')
plt.ylabel('Feature Importance Score') def get_params(self, deep=True):
return self.params def set_params(self, **params):
self.params.update(params)
return self
def mae_score(y_true, y_pred):
return mean_absolute_error(np.exp(y_true), np.exp(y_pred))
mae_scorer = make_scorer(mae_score, greater_is_better=False)
bst = XGBoostRegressor(eta=0.1, colsample_bytree=0.5, subsample=0.5,
max_depth=5, min_child_weight=3, num_boost_round=50)
bst.kfold(train_x, train_y, nfold=5)
test-mae-mean 1219.014551
test-mae-std 8.931061
train-mae-mean 1210.682813
train-mae-std 2.798608
Name: 49, dtype: float64
Step 1: 学习率与树个数
Step 2: 树的深度与节点权重
这些参数对xgboost性能影响最大,因此,他们应该调整第一。我们简要地概述它们:
max_depth: 树的最大深度。增加这个值会使模型更加复杂,也容易出现过拟合,深度3-10是合理的。min_child_weight: 正则化参数. 如果树分区中的实例权重小于定义的总和,则停止树构建过程。
xgb_param_grid = {'max_depth': list(range(4,9)), 'min_child_weight': list((1,3,6))}
xgb_param_grid['max_depth']
[4, 5, 6, 7, 8]
%%time grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, colsample_bytree=0.5, subsample=0.5),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
Wall time: 29min 48s
grid.grid_scores_, grid.best_params_, grid.best_score_
([mean: -1243.19015, std: 6.70264, params: {'max_depth': 4, 'min_child_weight': 1},
mean: -1243.30647, std: 6.82365, params: {'max_depth': 4, 'min_child_weight': 3},
mean: -1243.50752, std: 6.60994, params: {'max_depth': 4, 'min_child_weight': 6},
mean: -1219.60926, std: 7.09979, params: {'max_depth': 5, 'min_child_weight': 1},
mean: -1218.72940, std: 6.82721, params: {'max_depth': 5, 'min_child_weight': 3},
mean: -1219.25033, std: 6.89855, params: {'max_depth': 5, 'min_child_weight': 6},
mean: -1204.68929, std: 6.28730, params: {'max_depth': 6, 'min_child_weight': 1},
mean: -1203.44649, std: 7.19550, params: {'max_depth': 6, 'min_child_weight': 3},
mean: -1203.76522, std: 7.13140, params: {'max_depth': 6, 'min_child_weight': 6},
mean: -1195.35465, std: 6.38664, params: {'max_depth': 7, 'min_child_weight': 1},
mean: -1194.02729, std: 6.69778, params: {'max_depth': 7, 'min_child_weight': 3},
mean: -1193.51933, std: 6.73645, params: {'max_depth': 7, 'min_child_weight': 6},
mean: -1189.10977, std: 6.18540, params: {'max_depth': 8, 'min_child_weight': 1},
mean: -1188.21520, std: 6.15132, params: {'max_depth': 8, 'min_child_weight': 3},
mean: -1187.95975, std: 6.71340, params: {'max_depth': 8, 'min_child_weight': 6}],
{'max_depth': 8, 'min_child_weight': 6},
-1187.9597499123447)
网格搜索发现的最佳结果:
{'max_depth': 8, 'min_child_weight': 6}, -1187.9597499123447)
设置成负的值是因为要找大的值
def convert_grid_scores(scores):
_params = []
_params_mae = []
for i in scores:
_params.append(i[0].values())
_params_mae.append(i[1])
params = np.array(_params)
grid_res = np.column_stack((_params,_params_mae))
return [grid_res[:,i] for i in range(grid_res.shape[1])]
_,scores = convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(5,3)
plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['min_child_weight'], xgb_param_grid['max_depth'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Depth / min_child_weight optimization')
plt.annotate('We use this', xy=(5.95, 7.95), xytext=(4, 7.5), arrowprops=dict(facecolor='white'), color='white')
plt.annotate('Good for depth=7', xy=(5.98, 7.05),
xytext=(4, 6.5), arrowprops=dict(facecolor='white'), color='white')
plt.xlabel('min_child_weight')
plt.ylabel('max_depth')
plt.grid(True)
plt.show()
我们看到,从网格搜索的结果,分数的提高主要是基于max_depth增加. min_child_weight稍有影响的成绩,但是,我们看到,min_child_weight = 6会更好一些。
Step 3: 调节 gamma去降低过拟合风险
%%time
xgb_param_grid = {'gamma':[ 0.1 * i for i in range(0,5)]}
grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, max_depth=8, min_child_weight=6,
colsample_bytree=0.5, subsample=0.5),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
Wall time: 13min 45s
grid.grid_scores_, grid.best_params_, grid.best_score_
([mean: -1187.95975, std: 6.71340, params: {'gamma': 0.0},
mean: -1187.67788, std: 6.44332, params: {'gamma': 0.1},
mean: -1187.66616, std: 6.75004, params: {'gamma': 0.2},
mean: -1187.21835, std: 7.06771, params: {'gamma': 0.30000000000000004},
mean: -1188.35004, std: 6.50057, params: {'gamma': 0.4}],
{'gamma': 0.30000000000000004},
-1187.2183540791846)
我们选择使用偏小一些的 gamma.
Step 4: 调节样本采样方式 subsample 和 colsample_bytree
%%time
xgb_param_grid = {'subsample':[ 0.1 * i for i in range(6,9)],
'colsample_bytree':[ 0.1 * i for i in range(6,9)]}
grid = GridSearchCV(XGBoostRegressor(eta=0.1, gamma=0.2, num_boost_round=50, max_depth=8, min_child_weight=6),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
Wall time: 28min 26s
grid.grid_scores_, grid.best_params_, grid.best_score_
([mean: -1185.67108, std: 5.40097, params: {'colsample_bytree': 0.6000000000000001, 'subsample': 0.6000000000000001},
mean: -1184.90641, std: 5.61239, params: {'colsample_bytree': 0.6000000000000001, 'subsample': 0.7000000000000001},
mean: -1183.73767, std: 6.15639, params: {'colsample_bytree': 0.6000000000000001, 'subsample': 0.8},
mean: -1185.09329, std: 7.04215, params: {'colsample_bytree': 0.7000000000000001, 'subsample': 0.6000000000000001},
mean: -1184.36149, std: 5.71298, params: {'colsample_bytree': 0.7000000000000001, 'subsample': 0.7000000000000001},
mean: -1183.83446, std: 6.24654, params: {'colsample_bytree': 0.7000000000000001, 'subsample': 0.8},
mean: -1184.43055, std: 6.68009, params: {'colsample_bytree': 0.8, 'subsample': 0.6000000000000001},
mean: -1183.33878, std: 5.74989, params: {'colsample_bytree': 0.8, 'subsample': 0.7000000000000001},
mean: -1182.93099, std: 5.75849, params: {'colsample_bytree': 0.8, 'subsample': 0.8}],
{'colsample_bytree': 0.8, 'subsample': 0.8},
-1182.9309918891634)
_, scores = convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(3,3)
plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['subsample'], xgb_param_grid['colsample_bytree'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Subsampling params tuning')
plt.annotate('Optimum', xy=(0.895, 0.6), xytext=(0.8, 0.695), arrowprops=dict(facecolor='black'))
plt.xlabel('subsample')
plt.ylabel('colsample_bytree')
plt.grid(True)
plt.show()
在当前的预训练模式的具体案例,我得到了下面的结果:
`{'colsample_bytree': 0.8, 'subsample': 0.8}, -1182.9309918891634)
Step 5: 减小学习率并增大树个数
参数优化的最后一步是降低学习速度,同时增加更多的估计量
First, we plot different learning rates for a simpler model (50 trees):
%%time
xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=50, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
CPU times: user 6.69 ms, sys: 0 ns, total: 6.69 ms
Wall time: 6.55 ms
grid.grid_scores_, grid.best_params_, grid.best_score_
([mean: -1205.85372, std: 3.46146, params: {'eta': 0.5},
mean: -1185.32847, std: 4.87321, params: {'eta': 0.4},
mean: -1170.00284, std: 4.76399, params: {'eta': 0.3},
mean: -1160.97363, std: 6.05830, params: {'eta': 0.2},
mean: -1183.66720, std: 6.69439, params: {'eta': 0.1},
mean: -1266.12628, std: 7.26130, params: {'eta': 0.075},
mean: -1709.15130, std: 8.19994, params: {'eta': 0.05},
mean: -2104.42708, std: 8.02827, params: {'eta': 0.04},
mean: -2545.97334, std: 7.76440, params: {'eta': 0.03}],
{'eta': 0.2},
-1160.9736284869114)
eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 50 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()
{'eta': 0.2}, -1160.9736284869114 是目前最好的结果
现在我们把树的个数增加到100
xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=100, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
CPU times: user 11.5 ms, sys: 0 ns, total: 11.5 ms
Wall time: 11.4 ms
grid.grid_scores_, grid.best_params_, grid.best_score_
([mean: -1231.04517, std: 5.41136, params: {'eta': 0.5},
mean: -1201.31398, std: 4.75456, params: {'eta': 0.4},
mean: -1177.86344, std: 3.67324, params: {'eta': 0.3},
mean: -1160.48853, std: 5.65336, params: {'eta': 0.2},
mean: -1152.24715, std: 5.85286, params: {'eta': 0.1},
mean: -1156.75829, std: 5.30250, params: {'eta': 0.075},
mean: -1184.88913, std: 6.08852, params: {'eta': 0.05},
mean: -1243.60808, std: 7.40326, params: {'eta': 0.04},
mean: -1467.04736, std: 8.70704, params: {'eta': 0.03}],
{'eta': 0.1},
-1152.2471498726127)
eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 100 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()
学习率低一些的效果更好
%%time
xgb_param_grid = {'eta':[0.09,0.08,0.07,0.06,0.05,0.04]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
CPU times: user 21.9 ms, sys: 34 µs, total: 22 ms
Wall time: 22 ms
在增加树的个数呢?
grid.grid_scores_, grid.best_params_, grid.best_score_
([mean: -1148.37246, std: 6.51203, params: {'eta': 0.09},
mean: -1146.67343, std: 6.13261, params: {'eta': 0.08},
mean: -1145.92359, std: 5.68531, params: {'eta': 0.07},
mean: -1147.44050, std: 6.33336, params: {'eta': 0.06},
mean: -1147.98062, std: 6.39481, params: {'eta': 0.05},
mean: -1153.17886, std: 5.74059, params: {'eta': 0.04}],
{'eta': 0.07},
-1145.9235944370419)
eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 200 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()
%%time # Final XGBoost model
bst = XGBoostRegressor(num_boost_round=200, eta=0.07, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9)
cv = bst.kfold(train_x, train_y, nfold=5)
CPU times: user 1.26 ms, sys: 22 µs, total: 1.28 ms
Wall time: 1.07 ms
cv
test-mae-mean 1146.997852
test-mae-std 9.541592
train-mae-mean 1036.557251
train-mae-std 0.974437
Name: 199, dtype: float64
总结
可以看到200棵树最好的ETA是0.07。正如我们所预料的那样,ETA和num_boost_round依赖关系不是线性的,但是有些关联。
花了相当长的一段时间优化xgboost. 从初始值: 1219.57. 经过调参之后达到 MAE=1171.77.
我们还发现参数之间的关系ETA和num_boost_round:
- 100 trees,
eta=0.1: MAE=1152.247 - 200 trees,
eta=0.07: MAE=1145.92
`XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9, eta=0.07).
xgboost作为kaggle和天池等各种数据比赛最受欢迎的算法之一,从项目中可见调参也是一件很容易的事情,并不复杂,好用精确率高,叫谁谁不用,
xgboost保险赔偿预测的更多相关文章
- XGBoost对波士顿房价进行预测
import numpy as np import matplotlib as mpl mpl.rcParams["font.sans-serif"] = ["SimHe ...
- 机器学习(四)--- 从gbdt到xgboost
gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于 ...
- xgboost使用调参
欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklea ...
- xgboost算法教程(两种使用方法)
标签: xgboost 作者:炼己者 ------ 欢迎大家访问我的简书以及我的博客 本博客所有内容以学习.研究和分享为主,如需转载,请联系本人,标明作者和出处,并且是非商业用途,谢谢! ------ ...
- XGBoost使用篇(未完成)
1.截止到本文(20191104)sklearn没有集成xgboost算法,需要单独安装xgboost库,然后导入使用 xgboost官网安装说明 Pre-built binary wheel for ...
- Kaggle : Display Advertising Challenge( ctr 预估 )
原文:http://blog.csdn.net/hero_fantao/article/details/42747281 Display Advertising Challenge --------- ...
- 【机器学习学习】SKlearn + XGBoost 预测 Titanic 乘客幸存
Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv, ...
- R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 ------------------------------- ...
- 【机器学习】SKlearn + XGBoost 预测 Titanic 乘客幸存
Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv, ...
随机推荐
- 知识图谱学习与实践(4)——通过例句介绍Sparql的使用
通过例句介绍Sparql的使用 1 简介 SPARQL的定义,是一个递归的定义,为SPARQL Protocal and RDF Query Language,是W3C制定的RDF知识图谱标准查询语言 ...
- asp.net core 系列之静态文件
这篇讲解asp.net core中的静态文件(大致翻译于官网). 静态文件,例如HTML,CSS, images和JavaScript. 要想直接被客户端访问,需要做一些配置. 一.Serve sta ...
- php--学习封装类 (一)(操作mysql数据库的数据访问)
<?php class DBDA //定义一个类 { //定义成员变量,不能直接定义,前面要加上public或者是private public $host = "localhost&q ...
- 10G文件如何对里面单词出现排序
10G文件如何对里面单词出现排序的问题(只要文件系统支持,不限大小). 其实这个问题很简单,10G文件是很大,但是出现的字符或单词是很有限的. 单字符只有那么一百多个,单词数量满打满算,以英文单词总数 ...
- C++多小球非对心弹性碰撞(HGE引擎)
程序是一个月前完成的,之前一直没正儿八经的来整理下这个程序,感觉比较简单,不过即使简单的东西也要跟大家分享下. 源码下载:http://download.csdn.net/detail/y851716 ...
- LinkedList实现类
List还有一个LinkedList的实现,它是一个基于链表实现的List类,对于顺序访问集合中的元素进行了优化,特别是当插入.删除元素时速度非常快.因为LinkedList即实现了List接口,也实 ...
- TestNG中group的用法
TestNG中的组可以从多个类中筛选组属性相同的方法执行. 比如有两个类A和B,A中有1个方法a属于组1,B中有1个方法b也属于组1,那么我们可以通过配置TestNG文件实现把这两个类中都属于1组的方 ...
- Vue事件修饰符详解
整体学习Vue时看到Vue文档中有事件修饰符的描述,但是看了之后并没有理解是什么意思,于是查阅了资料,现在记录下来与大家分享 先给大家画一个示意图理解一下冒泡和捕获 (1) .stop修饰符 请看如下 ...
- Python版:Selenium2.0之WebDriver学习总结_实例1
Python版:Selenium2.0之WebDriver学习总结_实例1 快来加入群[python爬虫交流群](群号570070796),发现精彩内容. 实属转载:本人看的原文地址 :http:/ ...
- gulp压缩js文件报错日志
输出 gulp-uglify 压缩js文件时报错信息 gulp.task('es6', function () { return gulp.src('src/main/webapp/bower_com ...