算法-一步步教你如何用c语言实现堆排序(非递归)
看了左神的堆排序,觉得思路很清晰,比常见的递归的堆排序要更容易理解,所以自己整理了一下笔记,带大家一步步实现堆排序算法
首先介绍什么是大根堆:每一个子树的最大值都是子树的头结点,即根结点是所有结点的最大值
堆排序是基于数组和二叉树思想实现的(二叉树是脑补结构,实际是数组)

堆排序过程
1、数组建成大根堆,首先,遍历所有结点,当前结点index和父结点(index-1)/ 2 比较 (当前数组的下标是index,此结点的父结点的下标就是(index-1)/ 2 ),如果比父结点大,交换,变成父结点的位置再和上一层的父结点比较,直到满足大根堆条件
int swap(int source[], int a, int b)
{
int temp = source[a];
source[a] = source[b];
source[b] = temp;
}
int heapsort(int source[], int len)
{
for (int i = ; i <len; i++)
{
heapInsert(source, i);
}
}
int heapInsert(int source[], int index)
{
while (source[index] > source[(index - ) / ])
{
swap(source, index, (index - ) / );
index = (index - ) / ;
}
}
2、让根结点和最后一个结点交换位置,也就是数组的第一个数和最后一个数交换位置,接下来最后一个数不用考虑了,比如一个数组有5个数,定义一个变量size=5,大根堆的根结点放到最后一个数后,--size
int size = len;
swap(source, , --size);
3、让交换后的头结点经历一个向下的调整,让结点和自己的两个孩子比较,如果孩子的值比头结点大,交换,交换到孩子结点位置,继续和下面的两个孩子比较,直到满足大根堆条件
int heapify(int source[], int index, int size)//index表示要和它两个孩子比较的结点
{
int left = index * + ; //找到index左孩子结点的数组下标
while (left < size)
{
int largest = left + < size && source[left + ] > source[left] ? source[left + ] : source[left];//如果有右孩子且右孩子比左孩子大,令largest=右孩子的值,也就是把两个孩子中最大的一个数赋给largest
if (source[index] < source[largest])
{
swap(source, index, largest);
index = largest;
left = index * + ;
}
else break;
} }
4、重复第2步,第3步,直到size = 0 ,整个数组排序过程结束
while (size > )
{
swap(source, , --size);
heapify(source, , size);
}
源代码如下
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int swap(int source[], int a, int b)
{
int temp = source[a];
source[a] = source[b];
source[b] = temp;
}
int heapsort(int source[], int len)
{
for (int i = ; i < len; i++)
{
heapInsert(source, i);
}
int size = len;
while (size > )
{
swap(source, , --size);
heapify(source, , size);
}
}
int heapInsert(int source[], int index)
{
while (source[index] > source[(index - ) / ])
{
swap(source, index, (index - ) / );
index = (index - ) / ;
}
}
int heapify(int source[], int index, int size)//index表示要和它两个孩子比较的结点
{
int left = index * + ; //找到index左孩子结点的数组下标
while (left < size)
{
int largest = left + < size && source[left + ] > source[left] ? left + : left;//如果有右孩子且右孩子比左孩子大,令largest=右孩子的值,也就是把两个孩子中最大的一个数赋给largest
if (source[index] < source[largest])
{
swap(source, index, largest);
index = largest;
left = index * + ;
}
else break;
} }
int main()
{
int source[] = { ,,,,,,,,,,,,,,,,, };
int len;
len = sizeof(source) / sizeof(int);
heapsort(source, len);
for (int i = ; i < len; i++)
{
printf("%d ", source[i]);
} }
输出结果

以上就是堆排序的所有细节,这个版本很优良,堆排序的额外空间复杂度是O(1),如果用递归的话,递归有递归栈,额外空间复杂度不就上去了吗,设计成这种迭代的可以省空间,时间复杂度为O(n log n)
转载请注明出处、作者 谢谢
算法-一步步教你如何用c语言实现堆排序(非递归)的更多相关文章
- 自己写算法---java的堆的非递归遍历
import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { S ...
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 一步步教你轻松学支持向量机SVM算法之案例篇2
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 一步步教你轻松学支持向量机SVM算法之理论篇1
一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
- 一步步教你轻松学关联规则Apriori算法
一步步教你轻松学关联规则Apriori算法 (白宁超 2018年10月22日09:51:05) 摘要:先验算法(Apriori Algorithm)是关联规则学习的经典算法之一,常常应用在商业等诸多领 ...
- 一步步教你轻松学K-means聚类算法
一步步教你轻松学K-means聚类算法(白宁超 2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...
- 一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3
一步步教你轻松学朴素贝叶斯深度篇3(白宁超 2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对 ...
- 一步步教你轻松学KNN模型算法
一步步教你轻松学KNN模型算法( 白宁超 2018年7月24日08:52:16 ) 导读:机器学习算法中KNN属于比较简单的典型算法,既可以做聚类又可以做分类使用.本文通过一个模拟的实际案例进行讲解. ...
随机推荐
- DataVeryLite和Nhibernate性能对比
电脑型号:acer 4752g 电脑配置: 代码分享: class Program { static void Main(string[] args) { Debug.Listeners.Add(ne ...
- c++用参数返回堆上的空间
<高质量c++和c编程>7.4 指针参数是如何传递内存的一节中写道 void GetMemory(char *p, int num) { p = (char *)malloc(sizeof ...
- ElasticSearch2.3.1环境搭建哪些不为人知的坑
首先说明一点,大家最好不要用什么尝鲜版,用比稳定版就好了,要不麻烦不断,另外出了问题,最好去官网,或者google搜索,因为这样靠谱些,要不现在好多都是低版本的,1.4的什么的,结果按照安装,多少情况 ...
- ABP开发框架前后端开发系列---(12)配置模块的管理
一般来说,一个系统或多或少都会涉及到一些系统参数或者用户信息的配置,而ABP框架也提供了一套配置信息的管理模块,ABP框架的配置信息,必须提前定义好配置的各项内容,然后才能在系统中初始化或者通过接口查 ...
- 论文研读Unet++
Unet++: A Nested U-Net Architecture for Medical Image Segmentation Unet++ 论文地址 这里仅进行简要介绍,可供读者熟悉其结构与特 ...
- 系统学习 Java IO (十六)----这么多类,应该用哪个?
目录:系统学习 Java IO---- 目录,概览 Java IO目的和功能 Java IO 包含 InputStream,OutputStream,Reader 和 Writer 类的许多子类. 原 ...
- Python开发【第六篇】: 面向对象
内容概要 面向对象和面向过程 面向对象三大特征 面向对象的成员 类与类之间的关系 约束 type.issubclass.isinstance self.super.MRO 1. 面向对象和面向过程 0 ...
- 关于重写equals()和hashCode()的思考
最近这几天一直对equals()和hashCode()的事搞不清楚,云里雾里的. 为什么重写equals(),我知道. 但是为什么要两个都要重写呢,我就有点迷糊了,所以趁现在思考清楚后记录一下. 起因 ...
- Java NIO学习系列三:Selector
前面的两篇文章中总结了Java NIO中的两大基础组件Buffer和Channel的相关知识点,在NIO中都是通过Channel和Buffer的协作来读写数据的,在这个基础上通过selector来协调 ...
- kd树原理及实现
常用来作空间划分及近邻搜索,是二叉空间划分树的一个特例.通常,对于维度为k,数据点数为N的数据集,kd树适用于N≫2的k次方的情形. 1维数据的查询 假设在数据库的表格T中存储了学生的语文成绩chin ...