Description

我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。
    给定N和S,计算不大于N的幸运数个数。

Input

输入的第一行包含整数N。
    接下来一行一个整数M,表示S中元素的数量。
    接下来M行,每行一个数字串,表示S中的一个元素。

Output

输出一行一个整数,表示答案模109+7的值。

Sample Input

20
3
2
3
14

Sample Output

14

HINT

下表中l表示N的长度,L表示S中所有串长度之和。

1 < =l < =1200 , 1 < =M < =100 ,1 < =L < =1500


在AC自动机上跑DP。

设$\large f[0/1][i][j]$表示填到第i位,匹配到自动机上第j个节点, 是否有限制的方案数。

然后$\large f[0][i][j]$是可以转移到$\large f[0][i+1][nxt[j][k]]$的。

$\large f[1][i][j]$在k不等于这一位的时候可以转移到$\large f[0][i+1][nxt[j][k]]$,

在等于这一位的时候转移到$\large f[1][i+1][nxt[j][k]]$。

要特判一下匹配到根节点时,如果正在填第一位,只能从$\large [1, n[1]]$中选择数转移,和上面类似,

如果不是在填第1位,则可以直接转移到$\large f[0][...][...]$。

注意如果一个节点是一个单词的结尾就不转移,自动机上的表示要沿着fail指针传递。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
using namespace std;
#define mod 1000000007
#define reg register
char n[];
int m; int cnt;
int nxt[][], end[], fail[];
int f[][][];//是否有限制,正在填第i个位置,匹配到第j个点.
int ans; inline void Ins(string s)
{
int now = ;
int len = s.length();
for (reg int i = ; i < len ; i ++)
now = nxt[now][s[i]-''] > ? nxt[now][s[i]-''] : (nxt[now][s[i]-''] = ++cnt);
end[now] = ;
} inline void AC_Match()
{
queue <int> q;
for (reg int i = ; i <= ; i ++)
if (nxt[][i]) q.push(nxt[][i]);
while(!q.empty())
{
int x = q.front();q.pop();
for (reg int i = ; i <= ; i ++)
{
if (nxt[x][i]) fail[nxt[x][i]] = nxt[fail[x]][i], q.push(nxt[x][i]), end[nxt[x][i]] |= end[nxt[fail[x]][i]];
else nxt[x][i] = nxt[fail[x]][i];
}
}
} signed main()
{
scanf("%s", n + );
scanf("%d", &m);
for (reg int i = ; i <= m ; i ++)
{
string x;
cin >> x;
Ins(x);
}
AC_Match();
int len = strlen(n + );
for (reg int i = ; i < len ; i ++)
{
for (reg int j = ; j <= cnt ; j ++)
{
if (f[][i][j]) {
for (reg int k = ; k <= ; k ++)
if (!end[nxt[j][k]]) (f[][i+][nxt[j][k]] += f[][i][j]) %= mod;
}
if (f[][i][j]) {
int up = n[i+] - '';
for (reg int k = ; k < up ; k ++)
if (!end[nxt[j][k]]) (f[][i+][nxt[j][k]] += f[][i][j]) %= mod;
if (!end[nxt[j][up]]) (f[][i+][nxt[j][up]] += f[][i][j]) %= mod;
}
if (j == )
{
if (i == ) {
int up = n[i+] - '';
for (reg int k = ; k < up ; k ++)
if (!end[nxt[j][k]]) (f[][i+][nxt[j][k]] += ) %= mod;
if (!end[nxt[j][up]]) (f[][i+][nxt[j][up]] += ) %= mod;
} else {
for (reg int k = ; k <= ; k ++)
if (!end[nxt[j][k]]) (f[][i+][nxt[j][k]] += ) %= mod;
}
}
}
}
for (reg int i = ; i <= cnt ; i ++)
(ans += (f[][len][i] + f[][len][i]) % mod) %= mod;
cout << ans << endl;
return ;
}

[BZOJ3550] [Sdoi2014]数数的更多相关文章

  1. 【BZOJ】【3530】【SDOI2014】数数

    AC自动机/数位DP orz zyf 好题啊= =同时加深了我对AC自动机(这个应该可以叫Trie图了吧……出边补全!)和数位DP的理解……不过不能自己写出来还真是弱…… /************* ...

  2. BZOJ3530: [Sdoi2014]数数

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 322  Solved: 188[Submit][Status] ...

  3. 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 682  Solved: 364 Description 我们称一 ...

  4. BZOJ 3530: [Sdoi2014]数数 [AC自动机 数位DP]

    3530: [Sdoi2014]数数 题意:\(\le N\)的不含模式串的数字有多少个,\(n=|N| \le 1200\) 考虑数位DP 对于长度\(\le n\)的,普通套路DP\(g[i][j ...

  5. 「SDOI2014」数数 解题报告

    「SDOI2014」数数 题目描述 我们称一个正整数 \(N\) 是幸运数,当且仅当它的十进制表示中不包含数字串集合 \(S\) 中任意一个元素作为其子串. 例如当 \(S=(\)22, 333, 0 ...

  6. 3530: [Sdoi2014]数数

    3530: [Sdoi2014]数数 链接 分析: 对给定的串建立AC自动机,然后数位dp.数位dp的过程中,记录当前在AC自动机的哪个点上,保证不能走到出现了给定串的点. 代码: #include& ...

  7. [SDOI2014]数数 --- AC自动机 + 数位DP

    [SDOI2014]数数 题目描述: 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串. 例如当S=(22,333,0233)时,233是幸运数,2333 ...

  8. bzoj [Sdoi2014]数数 AC自动机上dp

    [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1264  Solved: 636[Submit][Status][Discu ...

  9. [Sdoi2014]数数[数位dp+AC自动机]

    3530: [Sdoi2014]数数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 834  Solved: 434[Submit][Status][ ...

  10. [bzoj3530][Sdoi2014]数数_AC自动机_数位dp

    数数 bzoj-3530 Sdoi-2014 题目大意:给你一个整数集合,求所有不超过n的正整数,是的它的十进制表示下不能再一段等于集合中的任意数. 注释:$1\le n \le 1200$,$1\l ...

随机推荐

  1. <%@ include %>导入的文件乱码

    如: <% String ss = (String) session.getAttribute("username"); if (ss == null || ss == &q ...

  2. VMware 虚拟机三种网络模式详解

    一.前言 Vmware 为我们提供了三种网络工作模式,分别是:Bridged(桥接模式).NAT(网络地址转换模式).Host-only(仅主机模式). 二.VMware 的几个常见虚拟设备 打开 V ...

  3. 48 (OC)* 适配iPad和iPhone、以及横竖屏适配。

    一:核心方法 1.三个方法 1.1:开始就会触发 - (void)viewWillLayoutSubviews; 1.2:开始就会触发 - (void)viewDidLayoutSubviews; 1 ...

  4. 复习0824js

    编程思想: 面向过程:凡事亲力亲为,所有事情的过程都要清楚,注重的是过程. 面向对象:提出需求,找到对象,对象解决这个问题,我们要结果,注重的是结果. 面向对象的特性:封装,继承,多态: JS: 是一 ...

  5. Vue学习之vue属性绑定和双向数据绑定

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. [Spark] 00 - Install Hadoop & Spark

    Hadoop安装 Java环境配置 安装课程:安装配置 配置手册:Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04[依照步骤完成配置] jsk安装使用的链接中第 ...

  7. 括号匹配(c语言实现)

    ⭐ 我的网站: www.mengyingjie.com ⭐ 1要求 编写程序检查该字符串的括号是否成对出现,而且不能交叉出现. 输入: 一个字符串,里边可能包含"()"." ...

  8. JS中如何防止表单重复提交问题

    在登录页面html中写如下代码 <script type="text/javascript"> var issubmit=false; function dosubmi ...

  9. Android Studio [RecyclerView/列表视图]

    LinearRecyclerViewActivity.java package com.xdw.a122.recyclerview; import android.graphics.Rect; imp ...

  10. ETL-Kettle学习笔记(入门,简介,简单操作)

    KETTLE Kettle:简介 ETL:简介 ETL(Extract-Transform-Load的缩写,即数据抽取.转换.装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换, ...