从一开始按以下方式逆时针旋转,可以形成一个边长为七的正方形螺旋:

一个有趣的现象是右下对角线上都有一个奇完全平方数,但是更有趣的是两条对角线上的十三个数中有八个数是素数(已经标红),也就是说素数占比为\(8/13\approx62\%\)。如果在上面的螺旋再加一层就可以形成一个边长为九的正文形螺旋。如果这个过程继续下去,在边长为多少的时候两条对角线上的数字中质数占比会低于10%?

分析:这道题和第二十八题非常类似,只不过二十八题是顺时针旋转,所以是右上角元素是完全平方数,而这道题是逆时针旋转,所以右下角元素是完全平方数。回忆二十八题的解题思路,我们从每一层的完全平方数开始,依次递推同一层的另外三个对角线元素的值。这道题也是一样的思路,首先观察每一层右下角的奇完全平方数,如边长为七时右下角的奇完全平方数是四十九,然后从四十九中减去六就得到左下角的对角线元素是四十三,而六恰好是边长七减去一。依次类推,我们从四十三中减去六得到左上角的对角线元素为三十七,再减去六得到右上角对角线元素为三十一。在这四个数中,右下角的完全平方数显然不是素数,所以我们只需要检测剩下三个元素是否是素数就可以了。

一般地,设每一层螺旋的边长为\(k\),显然\(k\)只能取大于一的奇数值。则这一层的右下角元素值为\(k^2\),左下角元素为\(k^2-(k-1)\),左上角元素为\(k^2-2(k-1)\),右上角元素为\(k^2-3(k-1)\)。在每一层,我们检查除右下角元素以外的其它三个元素是否为素数,假设到目前这一层为止总共在对角线上发现了\(p\)个素数,而对角线上元素共有\(2k-1\)个,则素数占比\(r=p/(2k-1)\),当\(r<0.1\)时返回\(k\)即为题目所求。代码如下:

# time cost = 276 ms ± 1.39 ms

from itertools import count
from sympy import isprime def main():
k = 0
for i in count(3,2):
a = i**2 - (i-1)
b = a - (i-1)
c = b - (i-1)
k += len([x for x in [a,b,c] if isprime(x)])
n = 2 * i - 1
if k/n < 0.1:
return i

Project Euler 58: Spiral primes的更多相关文章

  1. Project Euler:Problem 58 Spiral primes

    Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length ...

  2. Project Euler 27 Quadratic primes( 米勒测试 + 推导性质 )

    题意: 欧拉发现了这个著名的二次多项式: f(n) = n2 + n + 41 对于连续的整数n从0到39,这个二次多项式生成了40个素数.然而,当n = 40时402 + 40 + 41 = 40( ...

  3. Project Euler 21 Distinct primes factors( 整数因子和 )

    题意: 记d(n)为n的所有真因数(小于n且整除n的正整数)之和. 如果d(a) = b且d(b) = a,且a ≠ b,那么a和b构成一个亲和数对,a和b被称为亲和数. 例如,220的真因数包括1. ...

  4. Project Euler 47 Distinct primes factors( 筛法记录不同素因子个数 )

    题意: 首次出现连续两个数均有两个不同的质因数是在: 14 = 2 × 715 = 3 × 5 首次出现连续三个数均有三个不同的质因数是在: 644 = 22 × 7 × 23645 = 3 × 5 ...

  5. Project Euler 37 Truncatable primes

    题意:3797有着奇特的性质.不仅它本身是一个素数,而且如果从左往右逐一截去数字,剩下的仍然都是素数:3797.797.97和7:同样地,如果从右往左逐一截去数字,剩下的也依然都是素数:3797.37 ...

  6. Project Euler 35 Circular primes

    题意:197被称为圆周素数,因为将它逐位旋转所得到的数:197/971和719都是素数.小于100的圆周素数有十三个:2.3.5.7.11.13.17.31.37.71.73.79和97.小于一百万的 ...

  7. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  8. Python练习题 038:Project Euler 010:两百万以内所有素数之和

    本题来自 Project Euler 第10题:https://projecteuler.net/problem=10 # Project Euler: Problem 10: Summation o ...

  9. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

随机推荐

  1. Web开发小贴士 -- 全面了解Cookie

    一.Cookie的出现 浏览器和服务器之间的通信少不了HTTP协议,但是因为HTTP协议是无状态的,所以服务器并不知道上一次浏览器做了什么样的操作,这样严重阻碍了交互式Web应用程序的实现. 针对上述 ...

  2. web 前端优化-戈多编程

    大家好,我是戈多,从事web开发工作接近三年了,今天来归纳下web前端优化的解决方案(码农搬砖工,来自各网络汇总) 1.减少Http请求 http请求越多,那么消耗的时间越多,如果在加上网络很糟糕,那 ...

  3. top命令之性能分析

    top命令详解 当前时间20:27:12 当前系统运行时间3:18秒    1个用户   系统负载平均长度为0.00,0.00,0.00(分别为1分钟.5分钟.15分钟前到现在的平均值) 第二行为进程 ...

  4. Java学习笔记之面向对象

    面向对象概念 面向对象编程 &面向过程编程 面向对象:关心是谁来做 面向过程:关心的是怎么做 面向对象总结成一句话:就是分工与协作,干活的是对象 生活中: 对象 -----抽象-------- ...

  5. POWERUP攻击渗透实战2

    准备环境: kali linux 攻击机 已获得靶机meterpreter(非管理)权限 win7 靶机  拥有powershell环境 运用到的模块:Get-RegistryAlwaysInstal ...

  6. Cocos2d-x入门之旅[4]场景

    我们之前讲了场景图(Scene Graph) 的概念,继续之前你先要知道 场景图决定了场景内节点对象的渲染顺序 渲染时 z-order 值大的节点对象会后绘制,值小的节点对象先绘制 HelloWorl ...

  7. WSL捣鼓记——图形化(以emacs为例)

    前言 这学期开始学习linux,但笔记本装了双系统之后指纹识别会失效,开虚拟机又十分占据内存,于是乎基本需要使用linux的时候就用wsl,可奈何只有命令行界面,在需要使用图形软件(如emacs)的时 ...

  8. Spring Boot项目中如何定制拦截器

    本文首发于个人网站:Spring Boot项目中如何定制拦截器 Servlet 过滤器属于Servlet API,和Spring关系不大.除了使用过滤器包装web请求,Spring MVC还提供Han ...

  9. 玩转OneNET物联网平台之MQTT服务③ —— 远程控制LED(设备自注册)

    授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...

  10. Java虚拟机类加载器及双亲委派机制

    所谓的类加载器(Class Loader)就是加载Java类到Java虚拟机中的,前面<面试官,不要再问我"Java虚拟机类加载机制"了>中已经介绍了具体加载class ...