[LeetCode] 42. Trapping Rain Water 收集雨水
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
Example:
Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
这道收集雨水的题跟之前的那道 Largest Rectangle in Histogram 有些类似,但是又不太一样,先来看一种方法,这种方法是基于动态规划 Dynamic Programming 的,维护一个一维的 dp 数组,这个 DP 算法需要遍历两遍数组,第一遍在 dp[i] 中存入i位置左边的最大值,然后开始第二遍遍历数组,第二次遍历时找右边最大值,然后和左边最大值比较取其中的较小值,然后跟当前值 A[i] 相比,如果大于当前值,则将差值存入结果,参见代码如下:
C++ 解法一:
class Solution {
public:
int trap(vector<int>& height) {
int res = , mx = , n = height.size();
vector<int> dp(n, );
for (int i = ; i < n; ++i) {
dp[i] = mx;
mx = max(mx, height[i]);
}
mx = ;
for (int i = n - ; i >= ; --i) {
dp[i] = min(dp[i], mx);
mx = max(mx, height[i]);
if (dp[i] > height[i]) res += dp[i] - height[i];
}
return res;
}
};
Java 解法一:
public class Solution {
public int trap(int[] height) {
int res = 0, mx = 0, n = height.length;
int[] dp = new int[n];
for (int i = 0; i < n; ++i) {
dp[i] = mx;
mx = Math.max(mx, height[i]);
}
mx = 0;
for (int i = n - 1; i >= 0; --i) {
dp[i] = Math.min(dp[i], mx);
mx = Math.max(mx, height[i]);
if (dp[i] - height[i] > 0) res += dp[i] - height[i];
}
return res;
}
}
再看一种只需要遍历一次即可的解法,这个算法需要 left 和 right 两个指针分别指向数组的首尾位置,从两边向中间扫描,在当前两指针确定的范围内,先比较两头找出较小值,如果较小值是 left 指向的值,则从左向右扫描,如果较小值是 right 指向的值,则从右向左扫描,若遇到的值比当较小值小,则将差值存入结果,如遇到的值大,则重新确定新的窗口范围,以此类推直至 left 和 right 指针重合,参见代码如下:
C++ 解法二:
class Solution {
public:
int trap(vector<int>& height) {
int res = , l = , r = height.size() - ;
while (l < r) {
int mn = min(height[l], height[r]);
if (mn == height[l]) {
++l;
while (l < r && height[l] < mn) {
res += mn - height[l++];
}
} else {
--r;
while (l < r && height[r] < mn) {
res += mn - height[r--];
}
}
}
return res;
}
};
Java 解法二:
public class Solution {
public int trap(int[] height) {
int res = 0, l = 0, r = height.length - 1;
while (l < r) {
int mn = Math.min(height[l], height[r]);
if (height[l] == mn) {
++l;
while (l < r && height[l] < mn) {
res += mn - height[l++];
}
} else {
--r;
while (l < r && height[r] < mn) {
res += mn - height[r--];
}
}
}
return res;
}
}
我们可以对上面的解法进行进一步优化,使其更加简洁:
C++ 解法三:
class Solution {
public:
int trap(vector<int>& height) {
int l = , r = height.size() - , level = , res = ;
while (l < r) {
int lower = height[(height[l] < height[r]) ? l++ : r--];
level = max(level, lower);
res += level - lower;
}
return res;
}
};
Java 解法三:
public class Solution {
public int trap(int[] height) {
int l = 0, r = height.length - 1, level = 0, res = 0;
while (l < r) {
int lower = height[(height[l] < height[r]) ? l++ : r--];
level = Math.max(level, lower);
res += level - lower;
}
return res;
}
}
下面这种解法是用 stack 来做的,博主一开始都没有注意到这道题的 tag 还有 stack,所以以后在总结的时候还是要多多留意一下标签啊。其实用 stack 的方法博主感觉更容易理解,思路是,遍历高度,如果此时栈为空,或者当前高度小于等于栈顶高度,则把当前高度的坐标压入栈,注意这里不直接把高度压入栈,而是把坐标压入栈,这样方便在后来算水平距离。当遇到比栈顶高度大的时候,就说明有可能会有坑存在,可以装雨水。此时栈里至少有一个高度,如果只有一个的话,那么不能形成坑,直接跳过,如果多余一个的话,那么此时把栈顶元素取出来当作坑,新的栈顶元素就是左边界,当前高度是右边界,只要取二者较小的,减去坑的高度,长度就是右边界坐标减去左边界坐标再减1,二者相乘就是盛水量啦,参见代码如下:
C++ 解法四:
class Solution {
public:
int trap(vector<int>& height) {
stack<int> st;
int i = , res = , n = height.size();
while (i < n) {
if (st.empty() || height[i] <= height[st.top()]) {
st.push(i++);
} else {
int t = st.top(); st.pop();
if (st.empty()) continue;
res += (min(height[i], height[st.top()]) - height[t]) * (i - st.top() - );
}
}
return res;
}
};
Java 解法四:
class Solution {
public int trap(int[] height) {
Stack<Integer> s = new Stack<Integer>();
int i = 0, n = height.length, res = 0;
while (i < n) {
if (s.isEmpty() || height[i] <= height[s.peek()]) {
s.push(i++);
} else {
int t = s.pop();
if (s.isEmpty()) continue;
res += (Math.min(height[i], height[s.peek()]) - height[t]) * (i - s.peek() - 1);
}
}
return res;
}
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/42
类似题目:
参考资料:
https://leetcode.com/problems/trapping-rain-water/
https://leetcode.com/problems/trapping-rain-water/discuss/17364/7-lines-C-C%2B%2B
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 42. Trapping Rain Water 收集雨水的更多相关文章
- leetcode#42 Trapping rain water的五种解法详解
leetcode#42 Trapping rain water 这道题十分有意思,可以用很多方法做出来,每种方法的思想都值得让人细细体会. 42. Trapping Rain WaterGiven n ...
- [array] leetcode - 42. Trapping Rain Water - Hard
leetcode - 42. Trapping Rain Water - Hard descrition Given n non-negative integers representing an e ...
- LeetCode 42. Trapping Rain Water 【两种解法】(python排序遍历,C++ STL map存索引,时间复杂度O(nlogn))
LeetCode 42. Trapping Rain Water Python解法 解题思路: 本思路需找到最高点左右遍历,时间复杂度O(nlogn),以下为向左遍历的过程. 将每一个点的高度和索引存 ...
- LeetCode - 42. Trapping Rain Water
42. Trapping Rain Water Problem's Link ------------------------------------------------------------- ...
- [LeetCode] Trapping Rain Water 收集雨水
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
- leetCode 42.Trapping Rain Water(凹槽的雨水) 解题思路和方法
Trapping Rain Water Given n non-negative integers representing an elevation map where the width of e ...
- [LintCode] Trapping Rain Water 收集雨水
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
- 【LeetCode】42. Trapping Rain Water 接雨水 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 保存左右最大值 单调栈 日期 题目地址:ht ...
- [leetcode]42. Trapping Rain Water雨水积水问题
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
随机推荐
- 轻松定位CPU飙高问题
以下四步轻松定位CPU飙高问题: ①top pid 查看cpu耗CPU进程 ②top -Hp pid 查看该进程所有线程的运行情况,找到占用 CPU 过高的线程 pid ③ printf %x pid ...
- Solr实现全文搜索
1.1 Solr是什么? Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展 ...
- 快速排序 Vs. 归并排序 Vs. 堆排序——谁才是最强的排序算法
知乎上有一个问题是这样的: 堆排序是渐进最优的比较排序算法,达到了O(nlgn)这一下界,而快排有一定的可能性会产生最坏划分,时间复杂度可能为O(n^2),那为什么快排在实际使用中通常优于堆排序? 昨 ...
- 人生第一次研读MFC截图工具的笔记心得
截图工具: 其中用到了动态链接库DLL技术(Dynamic Link Library)技术,键盘钩子技术,光标捕获技术,类橡皮类CRectTracker 头文件:后缀名为.cpp,主要是定义和声明之类 ...
- 闲话复数(1) | 不现实的虚数 i 为什么虚?它长成什么样?
原文 | https://mp.weixin.qq.com/s/y-Nb3S508UZuf_0GtRuNaQ 复数的英文是complex number,直译是复杂的数.最早接触复数大概是在高中时期,只 ...
- 安装Linux操作系统,学习Linux基础
第一项:安装Linux系统 遇到的问题: 1.操作过程中遇到权限不足的情况. 解决过程:通过百度后发现可以使用sudo,或chmod命令解决. 2.在以上过程中对chmod命令的用法产生疑惑. 解决过 ...
- 案例:Oracle 10g RAC 集群无法启动
环境:RHEL 5.7 + Oracle 10.2.0.5 RAC 很多年前的一套测试环境,今天发现集群无法启动.手工尝试启动crs,集群日志也无任何输出.进一步检查集群配置: [oracle@rac ...
- 利用 chunked 类型响应实现后台请求的监听
Koa 中实现 chunked 数据传输 中介绍了如何在 Koa 中实现 Transfer-Encoding:chunked 类型的响应分片传输.这里来看一个应用场景. 假如我们想监听后台的请求,并将 ...
- (转)isolation forest进行异常点检测
原文链接:https://www.cnblogs.com/gczr/p/9156971.html 一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似, ...
- (转)理解滑动平均(exponential moving average)
转自:理解滑动平均(exponential moving average) 1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exp ...