[LeetCode] 42. Trapping Rain Water 收集雨水
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
Example:
Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
这道收集雨水的题跟之前的那道 Largest Rectangle in Histogram 有些类似,但是又不太一样,先来看一种方法,这种方法是基于动态规划 Dynamic Programming 的,维护一个一维的 dp 数组,这个 DP 算法需要遍历两遍数组,第一遍在 dp[i] 中存入i位置左边的最大值,然后开始第二遍遍历数组,第二次遍历时找右边最大值,然后和左边最大值比较取其中的较小值,然后跟当前值 A[i] 相比,如果大于当前值,则将差值存入结果,参见代码如下:
C++ 解法一:
class Solution {
public:
int trap(vector<int>& height) {
int res = , mx = , n = height.size();
vector<int> dp(n, );
for (int i = ; i < n; ++i) {
dp[i] = mx;
mx = max(mx, height[i]);
}
mx = ;
for (int i = n - ; i >= ; --i) {
dp[i] = min(dp[i], mx);
mx = max(mx, height[i]);
if (dp[i] > height[i]) res += dp[i] - height[i];
}
return res;
}
};
Java 解法一:
public class Solution {
public int trap(int[] height) {
int res = 0, mx = 0, n = height.length;
int[] dp = new int[n];
for (int i = 0; i < n; ++i) {
dp[i] = mx;
mx = Math.max(mx, height[i]);
}
mx = 0;
for (int i = n - 1; i >= 0; --i) {
dp[i] = Math.min(dp[i], mx);
mx = Math.max(mx, height[i]);
if (dp[i] - height[i] > 0) res += dp[i] - height[i];
}
return res;
}
}
再看一种只需要遍历一次即可的解法,这个算法需要 left 和 right 两个指针分别指向数组的首尾位置,从两边向中间扫描,在当前两指针确定的范围内,先比较两头找出较小值,如果较小值是 left 指向的值,则从左向右扫描,如果较小值是 right 指向的值,则从右向左扫描,若遇到的值比当较小值小,则将差值存入结果,如遇到的值大,则重新确定新的窗口范围,以此类推直至 left 和 right 指针重合,参见代码如下:
C++ 解法二:
class Solution {
public:
int trap(vector<int>& height) {
int res = , l = , r = height.size() - ;
while (l < r) {
int mn = min(height[l], height[r]);
if (mn == height[l]) {
++l;
while (l < r && height[l] < mn) {
res += mn - height[l++];
}
} else {
--r;
while (l < r && height[r] < mn) {
res += mn - height[r--];
}
}
}
return res;
}
};
Java 解法二:
public class Solution {
public int trap(int[] height) {
int res = 0, l = 0, r = height.length - 1;
while (l < r) {
int mn = Math.min(height[l], height[r]);
if (height[l] == mn) {
++l;
while (l < r && height[l] < mn) {
res += mn - height[l++];
}
} else {
--r;
while (l < r && height[r] < mn) {
res += mn - height[r--];
}
}
}
return res;
}
}
我们可以对上面的解法进行进一步优化,使其更加简洁:
C++ 解法三:
class Solution {
public:
int trap(vector<int>& height) {
int l = , r = height.size() - , level = , res = ;
while (l < r) {
int lower = height[(height[l] < height[r]) ? l++ : r--];
level = max(level, lower);
res += level - lower;
}
return res;
}
};
Java 解法三:
public class Solution {
public int trap(int[] height) {
int l = 0, r = height.length - 1, level = 0, res = 0;
while (l < r) {
int lower = height[(height[l] < height[r]) ? l++ : r--];
level = Math.max(level, lower);
res += level - lower;
}
return res;
}
}
下面这种解法是用 stack 来做的,博主一开始都没有注意到这道题的 tag 还有 stack,所以以后在总结的时候还是要多多留意一下标签啊。其实用 stack 的方法博主感觉更容易理解,思路是,遍历高度,如果此时栈为空,或者当前高度小于等于栈顶高度,则把当前高度的坐标压入栈,注意这里不直接把高度压入栈,而是把坐标压入栈,这样方便在后来算水平距离。当遇到比栈顶高度大的时候,就说明有可能会有坑存在,可以装雨水。此时栈里至少有一个高度,如果只有一个的话,那么不能形成坑,直接跳过,如果多余一个的话,那么此时把栈顶元素取出来当作坑,新的栈顶元素就是左边界,当前高度是右边界,只要取二者较小的,减去坑的高度,长度就是右边界坐标减去左边界坐标再减1,二者相乘就是盛水量啦,参见代码如下:
C++ 解法四:
class Solution {
public:
int trap(vector<int>& height) {
stack<int> st;
int i = , res = , n = height.size();
while (i < n) {
if (st.empty() || height[i] <= height[st.top()]) {
st.push(i++);
} else {
int t = st.top(); st.pop();
if (st.empty()) continue;
res += (min(height[i], height[st.top()]) - height[t]) * (i - st.top() - );
}
}
return res;
}
};
Java 解法四:
class Solution {
public int trap(int[] height) {
Stack<Integer> s = new Stack<Integer>();
int i = 0, n = height.length, res = 0;
while (i < n) {
if (s.isEmpty() || height[i] <= height[s.peek()]) {
s.push(i++);
} else {
int t = s.pop();
if (s.isEmpty()) continue;
res += (Math.min(height[i], height[s.peek()]) - height[t]) * (i - s.peek() - 1);
}
}
return res;
}
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/42
类似题目:
参考资料:
https://leetcode.com/problems/trapping-rain-water/
https://leetcode.com/problems/trapping-rain-water/discuss/17364/7-lines-C-C%2B%2B
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 42. Trapping Rain Water 收集雨水的更多相关文章
- leetcode#42 Trapping rain water的五种解法详解
leetcode#42 Trapping rain water 这道题十分有意思,可以用很多方法做出来,每种方法的思想都值得让人细细体会. 42. Trapping Rain WaterGiven n ...
- [array] leetcode - 42. Trapping Rain Water - Hard
leetcode - 42. Trapping Rain Water - Hard descrition Given n non-negative integers representing an e ...
- LeetCode 42. Trapping Rain Water 【两种解法】(python排序遍历,C++ STL map存索引,时间复杂度O(nlogn))
LeetCode 42. Trapping Rain Water Python解法 解题思路: 本思路需找到最高点左右遍历,时间复杂度O(nlogn),以下为向左遍历的过程. 将每一个点的高度和索引存 ...
- LeetCode - 42. Trapping Rain Water
42. Trapping Rain Water Problem's Link ------------------------------------------------------------- ...
- [LeetCode] Trapping Rain Water 收集雨水
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
- leetCode 42.Trapping Rain Water(凹槽的雨水) 解题思路和方法
Trapping Rain Water Given n non-negative integers representing an elevation map where the width of e ...
- [LintCode] Trapping Rain Water 收集雨水
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
- 【LeetCode】42. Trapping Rain Water 接雨水 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 保存左右最大值 单调栈 日期 题目地址:ht ...
- [leetcode]42. Trapping Rain Water雨水积水问题
Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...
随机推荐
- TimeSpan的用法
TimeSpan的属性和方法: 下面的列表涵盖了其中的一部分: 属性: Add:与另一个TimeSpan值相加. Days: 返回用天数计算的TimeSpan值.Hours: 返回用小时计算的Time ...
- LeetCode刷题191122
博主渣渣一枚,刷刷leetcode给自己瞅瞅,大神们由更好方法还望不吝赐教.题目及解法来自于力扣(LeetCode),传送门. 算法: 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. ...
- vmware vsphere client 虚拟机动态添加磁盘
0x00 事件 为了在虚拟机添加了磁盘之后,不重启机器加载新磁盘. 如上图,添加了一块 10G 的磁盘之后. 在虚拟机中是看不到新添加的磁盘: 0x01 解决 运行如下命令,通过重新扫描 SCSI ( ...
- sqlserver的表变量在没有预估偏差的情况下,与物理表可join产生的性能问题
众所周知,在sqlserver中,表变量最大的特性之一就是没有统计信息,无法较为准备预估其数据分布情况,因此不适合参与较为复杂的SQL运算.当SQL相对简单的时候,使用表变量,在某些场景下,即便是对表 ...
- OOAD 面向对象的分析与设计
OOAD 面向对象的分析与设计 OOA-----分析阶段(针对业务问题清晰视图, 列出系统完成任务, 整理业务的公共词汇, 列出解决业务的解决方法) O ...
- tensorflow基础-数据类型
一:tensorflow中的计算定义和执行 首先,对于tensorflow来说,最重要的概念就是图(Graph)和会话(Session),tensorflow的计算思想是:以图的形式来表示模型,表示和 ...
- linux之任务调度,磁盘分区,yum下载
一.crond任务调度 调度机制: 基本语法 crontab [选项] -e : bianji crontab定时任务 -l : 查询crontab -r : 删除当前用户所有的crontab任务 例 ...
- java之程序流程控制
顺序结构:代码由上至下依次执行: 分支结构: if () { } else{ } if () { } else if () { } else { } switch(常量){ case 常量: 语句; ...
- MySQL常用SQL语句总结
1.with rollup 可以实现在分组统计数据基础上再进行相同的统计 SELECT name, SUM(score) as score_count FROM score GROUP BY nam ...
- IT兄弟连 HTML5教程 CSS3揭秘 CSS3属性3
5 用户界面属性 在CSS3中,新的用户界面特性包括重设元素尺寸.盒尺寸及轮廓等.本小节着重介绍一下resize属性,只有Firefox 4和Safari 3浏览器支持此属性.resize属性可用于重 ...