CSUOJ1811 Tree Intersection (启发式合并)
Input
OutputFor each set, (n-1) integers R 1,R 2,…,R n-1.Sample Input
4
1 2 2 1
1 2
2 3
3 4
5
1 1 2 1 2
1 3
2 3
3 5
4 5
Sample Output
1
2
1
1
1
2
1
Hint
题解:题意就是,给以一颗树n个节点,每个节点有一种颜色,然年后对于n-1条边,如果把一条边截断,让你求两颗子树有多少种相同的颜色,依次输入每一条边的答案。
启发式搜索,分别记录点和边的答案;如果点u和其子树某种颜色的数量已经等于总量了,那么对于该子树外的一部分,就没有该中颜色了,答案-1;如果小于总量,答案+1;
然后更新u节点该颜色的数量即可;
参考代码:
#include<bits/stdc++.h>
using namespace std;
#define clr(a,val) memset(a,val,sizeof (a))
#define pb push_back
#define fi first
#define se second
typedef long long ll;
const int maxn=1e5+;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
struct Edge{
int to,index,nxt;
} edge[maxn<<];
int n,head[maxn<<],tot;
int col[maxn],sum[maxn],ans[maxn],res[maxn<<];//ans[u]表示u点及子节点的答案, res[edge]表示边的答案
map<int,int> cnt[maxn];//cnt[u][color] 表示u点子树color颜色有多少个节点 inline void Init()
{
clr(head,-);clr(sum,); tot=;
for(int i=;i<=n;++i) cnt[i].clear();
} inline void addedge(int u,int v,int id)
{
edge[tot].to=v;
edge[tot].index=id;
edge[tot].nxt=head[u];
head[u]=tot++;
} inline void dfs(int u,int fa,int id)
{
cnt[u][col[u]]=;
ans[u] = cnt[u][col[u]]<sum[col[u]]?:;
for(int e=head[u];~e;e=edge[e].nxt)
{
int v=edge[e].to;
if(v==fa) continue;
dfs(v,u,edge[e].index);
if(cnt[u].size()<cnt[v].size())
{
swap(cnt[u],cnt[v]);
swap(ans[u],ans[v]);
}
map<int,int>::iterator it;
for(it=cnt[v].begin();it!=cnt[v].end();it++)
{
if(!cnt[u][(*it).fi] && (*it).se<sum[(*it).fi]) ++ans[u];
else if(cnt[u][(*it).fi] && cnt[u][(*it).fi]+(*it).se==sum[(*it).fi]) --ans[u];
cnt[u][(*it).fi]+=(*it).se;//加上子树的数量
}
}
res[id]=ans[u];
} int main()
{
while(~scanf("%d",&n))
{
Init();
for(int i=;i<=n;++i) col[i]=read(),sum[col[i]]++;
for(int i=;i<n;++i)
{
int u=read(),v=read();
addedge(u,v,i);addedge(v,u,i);
}
dfs(,,);
for(int i=;i<n;++i) printf("%d\n",res[i]);
} return ;
}
CSUOJ1811 Tree Intersection (启发式合并)的更多相关文章
- csu oj 1811: Tree Intersection (启发式合并)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1811 给你一棵树,每个节点有一个颜色.问删除一条边形成两棵子树,两棵子树有多少种颜色是有 ...
- dsu on tree 树上启发式合并 学习笔记
近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...
- dsu on tree[树上启发式合并学习笔记]
dsu on tree 本质上是一个 启发式合并 复杂度 \(O(n\log n)\) 不支持修改 只能支持子树统计 不能支持链上统计- 先跑一遍树剖的dfs1 搞出来轻重儿子- 求每个节点的子树上有 ...
- dsu on tree (树上启发式合并) 详解
一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...
- AGC 014E.Blue and Red Tree(思路 启发式合并)
题目链接 \(Description\) 给定两棵\(n\)个点的树,分别是由\(n-1\)条蓝边和\(n-1\)条红边组成的树.求\(n-1\)次操作后,能否把蓝树变成红树. 每次操作是,选择当前树 ...
- dsu on tree(树上启发式合并)
简介 对于一颗静态树,O(nlogn)时间内处理子树的统计问题.是一种优雅的暴力. 算法思想 很显然,朴素做法下,对于每颗子树对其进行统计的时间复杂度是平方级别的.考虑对树进行一个重链剖分.虽然都基于 ...
- CSU 1811: Tree Intersection(线段树启发式合并||map启发式合并)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1811 题意:给出一棵树,每一个结点有一个颜色,然后依次删除树边,问每次删除树边之后,分开的两个 ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- 树上启发式合并(dsu on tree)学习笔记
有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...
随机推荐
- java VS c#,异同点
因工作安排,后期需要维护一个java项目.所以稍微熟悉下java,开此篇记录下java与c#的区别点,方便增强自己学习效果.肯定是不全的,可能是有错的,欢迎批评指正. 一.关键字 描述 C# Java ...
- Python 基础 面向对象之二 三大特性
Python 基础 面向对象之二 三大特性 上一篇主要介绍了Python中,面向对象的类和对象的定义及实例的简单应用,本篇继续接着上篇来谈,在这一篇中我们重点要谈及的内容有:Python 类的成员.成 ...
- SpringMVC错误:Failed to read candidate component class:file... ...
Failed to read candidate component class:file错误分析和处理 org.springframework.beans.factory.BeanDefinitio ...
- suseoj 1207: 大整数的乘法(java, 大数相乘, C/C++, 大数相乘)
1207: 大整数的乘法 时间限制: 1 Sec 内存限制: 128 MB提交: 7 解决: 2[提交][状态][讨论版][命题人:liyuansong] 题目描述 求两个不超过200位的非负整数 ...
- 领扣(LeetCode)翻转二叉树 个人题解
翻转一棵二叉树. 示例: 输入: 4 / \ 2 7 / \ / \ 1 3 6 9 输出: 4 / \ 7 2 / \ / \ 9 6 3 1 备注:这个问题是受到 Max Howell的 原问题 ...
- 使用图数据库 Nebula Graph 数据导入快速体验知识图谱 OwnThink
前言 本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱--OwnThink(链接:https://github.com/ownthink/Kn ...
- C# 未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”
“Microsoft.Jet.OLEDB.4.0” 是数据库接口驱动,用来连接数据库的,一般多用于连Access和Excel.我在在winform开发时,在本地运行没有问题,可是部署到另一台服务器上就 ...
- k8s 获取 Pod ip 添加到环境变量
0x00 事件 有一个需要将 Pod 自身的 ip 地址添加到环境变量的需求,可以在 yaml 文件的 env 中这样设置: env: - name: POD_OWN_IP_ADDRESS value ...
- cnpm镜像安装
npm install -g cnpm --registry=https://registry.npm.taobao.org
- .NET高级特性-Emit(2.2)属性
关于Emit的博客已经进入第四篇,在读本篇博文之前,我希望读者能先仔细回顾博主之前所编写的关于Emit的博文,从该篇博文开始,我们就可以真正的使用Emit,并把知识转化为实战,我也会把之前的博文链接放 ...