NOIP 2011 铺地毯
洛谷 P1003 铺地毯
JDOJ 1744: [NOIP2011]铺地毯 D1 T1
Description
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
【数据范围】
对于 30%的数据,有n≤2;
对于 50%的数据,0≤a, b, g, k≤100;
对于 100%的数据,有0≤n≤10,000,0≤a, b, g, k≤100,000。
Input
输入共 n+2 行。
第一行,一个整数 n,表示总共有n 张地毯。
接下来的 n 行中,第i+1 行表示编号i 的地毯的信息,包含四个正整数a,b,g,k,每
两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x
轴和y 轴方向的长度。
第 n+2 行包含两个正整数x 和y,表示所求的地面的点的坐标(x,y)
Output
输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
Sample Input
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2 sample input2: 3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
Sample Output
3 sample output2: -1
HINT
【输入输出样例2说明】
如上图,1 号地毯用实线表示,2 号地毯用虚线表示,3 号用双实线表示,点(4,5)
Source
题解:
逆向思维的一个应用。有一种离线的味道。
为什么说是逆向思维呢?
一般来讲,可能大家会这么想大佬请忽略这句话:正向枚举,一个个打标记,最后直接\(O(1)\)查询所求坐标点的编号就可以。
但是这样的时空复杂度都过不去...空间更明显一些,开不下数组。而我们这道题又不能用离散化。所以我们考虑逆向解决这个问题:我们把所有的地毯存在结构体中,维护它左下及右上两个点的坐标。如果一个点横坐标大于左下点的横坐标,且小于右上点的横坐标(纵坐标同理),那么就可以判定在这个地毯上。那么我们先把所有地毯都铺上去,然后逆向枚举每一个地毯,什么时候所求点符合要求了,那么当前的地毯就是答案,如果所有的地毯都遍历过了还是没找到,就是\(-1\)的情况。
代码:
#include<cstdio>
using namespace std;
const int maxn=1e4+10;
int n;
struct node
{
int x,y,a,b;
}c[maxn];
int qx,qy;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int a,b,g,k;
scanf("%d%d%d%d",&a,&b,&g,&k);
c[i].x=a;c[i].y=b;
c[i].a=a+g;c[i].b=b+k;
}
scanf("%d%d",&qx,&qy);
for(int i=n;i>=0;i--)
{
if(!i)
{
printf("-1");
return 0;
}
if(qx>=c[i].x && qx<=c[i].a && qy>=c[i].y && qy<=c[i].b)
{
printf("%d",i);
return 0;
}
}
}
NOIP 2011 铺地毯的更多相关文章
- P1003 铺地毯(noip 2011)
洛谷——P1003 铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯 ...
- NOIP 2011 Day 1
NOIP 2011 Day 1 tags: NOIP 搜索 categories: 信息学竞赛 总结 铺地毯 选择客栈 Mayan游戏 铺地毯 Solution 因为只会询问一个点被谁覆盖, 而且后面 ...
- NOIP 2011 Day 1 部分题解 (Prob#1 and Prob#2)
Problem 1: 铺地毯 乍一看吓cry,地毯覆盖...好像是2-dims 线段树,刚开头就这么难,再一看,只要求求出一个点,果断水题,模拟即可.(注意从标号大的往小的枚举,只要有一块地毯符合要求 ...
- NOIP201105铺地毯
NOIP201105铺地毯 [问题描述]为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有n 张地毯,编号从1 到n.现在将这些地毯按照 ...
- NOIP2011 铺地毯
1铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的 ...
- Vjios P1736 铺地毯【暴力,思维】
铺地毯 描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有n张地毯,编号从1到n.现在将这些地毯按照编号从小到大的顺序平行于坐标轴 ...
- LG. 1003 铺地毯
LG. 1003 铺地毯 题意分析 给出平面中地毯的左上角坐标和长宽,然后给出一点(x,y).求此点最上面是哪个地毯的编号,若没被覆盖则输出-1. 将所有地毯的信息存在一个结构体中,由于后埔地毯在上面 ...
- noip 2011
铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺 ...
- NOIP2011 D1T1 铺地毯
P1692 铺地毯 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2011 day1 第一题 描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩 ...
随机推荐
- GNS3 2.18 + ASA(IOU)
使用软件及版本 地址:https://www.gns3.com/ gns3: 2.1.18 ASA:asa842-initrd asa842-vmlinuz 一.gns3 vm安装 1.安装 注意:启 ...
- 【Oracle】常用函数
来源自:https://www.cnblogs.com/lxl57610/p/7442130.html Oracle SQL 提供了用于执行特定操作的专用函数.这些函数大大增强了 SQL 语言的功能. ...
- R的环境系统
r环境概念 环境:用来具体存储对象的地方. 规则1:每一个对象都存储在一个环境当中. 规则2:每一个环境都与一个父环境相连接,构成一个分层的环境系统. 规则3:子环境与父环境的连接是单向的. pa ...
- WPF 精修篇 附加属性
原文:WPF 精修篇 附加属性 微软把DLL都开源了 今天看了一下 很多WPF实现内容都在里面 https://referencesource.microsoft.com/ 说附加属性 附加属性 是 ...
- Paper | Non-local Neural Networks
目录 1. 动机 2. 相关工作 3. Non-local神经网络 3.1 Formulation 3.2 具体实现形式 3.3 Non-local块 4. 视频分类模型 4.1 2D ConvNet ...
- source vimrc的时候报错:.vimrc:1: command not found: syntax
vim的配置如下: 1 syntax enable //语法高亮 2 set number //显示行号 3 set cursorline //突出显示当前行 4 set ruler //打开状态栏标 ...
- 教妹学 Java:动态伴侣 Groovy
00.故事的起源 “二哥,听说上一篇<多线程>被 CSDN 创始人蒋涛点赞了?”三妹对她提议的<教妹学 Java>专栏一直很关心. “嗯,有点激动.刚开始还以为是个马甲,没 ...
- WPF中DataGrid在没有数据的时候也可以显示水平滚动条
今天做项目中遇到个问题,就是页面加载后默认DataGrid是不加载数据的,但是DataGrid的列很多,就导致了运行效果上,此窗口的DataGrid没有水平滚动条,类似图片的效果. 经过百度和摸索,使 ...
- Z从壹开始前后端分离【 .NETCore2.1 +Vue 2 +AOP+DI】框架之一 || 前言
老张 .NetCore与Vue 框架学习目录
- Mac设置su root密码
转自:https://blog.csdn.net/maxsky/article/details/44905003 大家都知道在 Linux 下,执行 su 命令后输入密码即可切换到 root 用户执 ...