需求与场景

上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现状就是如此庞大的数据集中在一个topic里)。这就需要根据一些业务规则把这个大数据量的topic数据分发到多个(成百上千)topic中,以便下游的多个job去消费自己topic的数据,这样上下游之间的耦合性就降低了,也让下游的job轻松了很多,下游的job只处理属于自己的数据,避免成百上千的job都去消费那个大数据量的topic。数据被分发之后再让下游job去处理 对网络带宽、程序性能、算法复杂性都有好处。

这样一来就需要 这么一个分发程序,把上下游job连接起来。

分析与思考

  1. Flink中有connect算子,可以连接2个流,在这里1个就是上面数据量庞大的业务数据流,另外1个就是规则流(或者叫做配置流,也就是决定根据什么样的规则分发业务数据)

  2. 但是问题来了,根据规则分发好了,如何把这些数据sink到kafka多个(成百上千)topic中呢?

  3. 首先想到的就是添加多个sink,每分发到一个topic,就多添加1个addSink操作,这对于如果只是分发到2、3个topic适用的,我看了一下项目中有时候需要把数据sink到2个topic中,同事中就有人添加了2个sink,完全ok,但是在这里要分发到几十个、成百上千个topic,就肯定不现实了,不需要解释吧。

  4. sink到kafka中,其实本质上就是用KafkaProducer往kafka写数据,那么不知道有没有想起来,用KafkaProducer写数据的时候api是怎样的,public Future<RecordMetadata> send(ProducerRecord<K, V> record); 显然这里需要一个ProducerRecord对象,再看如何实例化ProducerRecord对象,public ProducerRecord(String topic, V value), 也就是说每一个message都指定topic,标明是写到哪一个topic的,而不必说 我们要写入10个不同的topic中,我们就一定new 10 个 KafkaProducer

  5. 到上面这一步,如果懂的人就会豁然开朗了,我本来想着可能需要稍微改改flink-connector-kafka实现,让我惊喜的是flink-connector-kafka已经留有了接口,只要实现KeyedSerializationSchema这个接口的String getTargetTopic(T element);就行

代码实现

先看一下KeyedSerializationSchema接口的定义,我们知道kafka中存储的都是byte[],所以由我们自定义序列化key、value

/**
* The serialization schema describes how to turn a data object into a different serialized
* representation. Most data sinks (for example Apache Kafka) require the data to be handed
* to them in a specific format (for example as byte strings).
*
* @param <T> The type to be serialized.
*/
@PublicEvolving
public interface KeyedSerializationSchema<T> extends Serializable { /**
* Serializes the key of the incoming element to a byte array
* This method might return null if no key is available.
*
* @param element The incoming element to be serialized
* @return the key of the element as a byte array
*/
byte[] serializeKey(T element); /**
* Serializes the value of the incoming element to a byte array.
*
* @param element The incoming element to be serialized
* @return the value of the element as a byte array
*/
byte[] serializeValue(T element); /**
* Optional method to determine the target topic for the element.
*
* @param element Incoming element to determine the target topic from
* @return null or the target topic
*/
String getTargetTopic(T element);
}

重点来了,实现这个String getTargetTopic(T element);就可以决定这个message写入到哪个topic里。

于是 我们可以这么做,拿到业务数据(我们用的是json格式),然后根据规则分发的时候,就在这条json格式的业务数据里添加一个写到哪个topic的字段,比如说叫topicKey

然后我们实现getTargetTopic()方法的时候,从业务数据中取出topicKey字段就行了。

实现如下(这里我是用scala写的,java类似):

class OverridingTopicSchema extends KeyedSerializationSchema[Map[String, Any]] {

  override def serializeKey(element: Map[String, Any]): Array[Byte] = null

  override def serializeValue(element: Map[String, Any]): Array[Byte] = JsonTool.encode(element) //这里用JsonTool指代json序列化的工具类

  /**
* kafka message value 根据 topicKey字段 决定 往哪个topic写
* @param element
* @return
*/
override def getTargetTopic(element: Map[String, Any]): String = {
if (element != null && element.contains(“topicKey”)) {
element(“topicKey”).toString
} else null
}
}

之后在new FlinkKafkaProducer对象的时候 把上面我们实现的这个OverridingTopicSchema传进去就行了。

public FlinkKafkaProducer(
String defaultTopicId, // 如果message没有指定写往哪个topic,就写入这个默认的topic
KeyedSerializationSchema<IN> serializationSchema,//传入我们自定义的OverridingTopicSchema
Properties producerConfig,
Optional<FlinkKafkaPartitioner<IN>> customPartitioner,
FlinkKafkaProducer.Semantic semantic,
int kafkaProducersPoolSize) {
//....
}

至此,我们只需要把上面new 出来的FlinkKafkaProducer添加到addSink中就能实现把数据sink到kafka多个(成百上千)topic中。

下面简单追踪一下FlinkKafkaProducer源码,看看flink-connector-kafka是如何将我们自定义的KeyedSerializationSchema作用于最终的ProducerRecord

        /**  这个是用户可自定义的序列化实现
* (Serializable) SerializationSchema for turning objects used with Flink into.
* byte[] for Kafka.
*/
private final KeyedSerializationSchema<IN> schema; @Override
public void invoke(FlinkKafkaProducer.KafkaTransactionState transaction, IN next, Context context) throws FlinkKafkaException {
checkErroneous();
// 调用我们自己的实现的schema序列化message中的key
byte[] serializedKey = schema.serializeKey(next); // 调用我们自己的实现的schema序列化message中的value
byte[] serializedValue = schema.serializeValue(next); // 调用我们自己的实现的schema取出写往哪个topic
String targetTopic = schema.getTargetTopic(next); if (targetTopic == null) {
// 如果没有指定写往哪个topic,就写往默认的topic
// 这个默认的topic是我们new FlinkKafkaProducer时候作为第一个构造参数传入(见上面的注释)
targetTopic = defaultTopicId;
} Long timestamp = null;
if (this.writeTimestampToKafka) {
timestamp = context.timestamp();
}
ProducerRecord<byte[], byte[]> record;
int[] partitions = topicPartitionsMap.get(targetTopic);
if (null == partitions) {
partitions = getPartitionsByTopic(targetTopic, transaction.producer);
topicPartitionsMap.put(targetTopic, partitions);
}
if (flinkKafkaPartitioner != null) {
record = new ProducerRecord<>(
targetTopic, // 这里看到了我们上面一开始分析的ProducerRecord
flinkKafkaPartitioner.partition(next, serializedKey, serializedValue, targetTopic, partitions),
timestamp,
serializedKey,
serializedValue);
} else {
record = new ProducerRecord<>(targetTopic, null, timestamp, serializedKey, serializedValue);
}
pendingRecords.incrementAndGet();
transaction.producer.send(record, callback);
}

如何用Flink把数据sink到kafka多个(成百上千)topic中的更多相关文章

  1. 如何用Flink把数据sink到kafka多个不同(成百上千)topic中

    需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现 ...

  2. 将CSV的数据发送到kafka(java版)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. Kafka深度解析(如何在producer中指定partition)(转)

    原文链接:Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能 ...

  4. 《从0到1学习Flink》—— Flink 写入数据到 Kafka

    前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用 ...

  5. 使用flume将kafka数据sink到HBase【转】

    1. hbase sink介绍 1.1 HbaseSink 1.2 AsyncHbaseSink 2. 配置flume 3. 运行测试flume 4. 使用RegexHbaseEventSeriali ...

  6. 《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch

    前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1 ...

  7. 《从0到1学习Flink》—— Data Sink 介绍

    前言 再上一篇文章中 <从0到1学习Flink>-- Data Source 介绍 讲解了 Flink Data Source ,那么这里就来讲讲 Flink Data Sink 吧. 首 ...

  8. Flink 之 Data Sink

    首先 Sink 的中文释义为: 下沉; 下陷; 沉没; 使下沉; 使沉没; 倒下; 坐下; 所以,对应 Data sink 意思有点把数据存储下来(落库)的意思: Source  数据源  ---- ...

  9. 大数据平台搭建-kafka集群的搭建

    本系列文章主要阐述大数据计算平台相关框架的搭建,包括如下内容: 基础环境安装 zookeeper集群的搭建 kafka集群的搭建 hadoop/hbase集群的搭建 spark集群的搭建 flink集 ...

随机推荐

  1. 「SP25784」BUBBLESORT - Bubble Sort 解题报告

    SP25784 BUBBLESORT - Bubble Sort 题目描述 One of the simplest sorting algorithms, the Bubble Sort, can b ...

  2. 「CF86D」Powerful array 解题报告

    题面 给出一个\(n\)个数组成的数列\(a\),有\(t\)次询问,每次询问为一个\([l,r]\)的区间,求区间内每种数字出现次数的平方×数字的值 的和 思路: 直接上莫队咯 然后就T了 没学过莫 ...

  3. 推荐中的多任务学习-ESMM

    本文将介绍阿里发表在 SIGIR'18 的论文ESMM<Entire Space Multi-Task Model: An Effective Approach for Estimating Po ...

  4. 基于JGraphT实现的路径探寻

    基于JGraphT实现的路径探寻 业务中提出基于内存,探寻的两点间的有向以及无向路径,多点间的最小子图等需求,以下记录使用JGraphT的实现过程. GraphT是免费的Java类库,提供数学图论对象 ...

  5. 最新IDEA永久激活攻略

    前言 写这篇文章的原因是我最近想自己写两个项目,却发现自己的IDEA过期了,对,就是那个JAVA编辑器,于是研究了一下IDEA的激活.发现网上的攻略大多数不可用. 当然这里推荐大家去官网购买正版使用. ...

  6. lldb调试器知多少

    lldb调试器简介   lldb 是一个有着 REPL 的特性和 C++ .Python 插件的开源调试器.lldb调试器的由来是伴随着Xcode的版本升级而来. Xcode4.3之前使用的默认调试器 ...

  7. mysql中emoji表情存储

    mysql中emoji表情存储 背景 在mysql 5.7.19,创建的数据库默认选择的编码是utf8 -- UTF-8 Unicode,因此字段默认的编码为utf-8,但在项目开发中存在一个需求:在 ...

  8. url的分发

    一.分发 补充:通过查看源码:可以通过二级路由include进行二次分发 位置:urls.py urlpatterns = [ path('admin/', admin.site.urls), pat ...

  9. C#图片采集软件 自动翻页 自动分类(收集美图必备工具)(一)

    网站管理员希望将别人的整站数据下载到自己的网站里或者将别人网站的一些内容保存到自己的服务器上.从内容中抽取相关的字段,发布到自己的网站系统中.有时需要将网页相关的文件也保存到本地,如图片.附件等. 图 ...

  10. Thematic002.字符串专题

    目录 Trie字典树 KMP AC自动机 Manacher 回文自动机 后缀数组 后缀自动机 Trie字典树 概念 我们先来看看什么是Trie字典树 可以发现,这棵树的每一条边都有一个字符 有一些点是 ...