洛谷P2486 [SDOI2011]染色 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P2486
首先这是一道树链剖分+线段树的题。
线段树部分和 codedecision P1112 区间连续段 一模一样,所以我们在做这道题目之前最好去做一下这道题目的练习。
然后就是树链剖分的部分。
此部分支持两种操作:
- 更新:这部分比较好实现;
- 查询:这部分需要你记录树链查询的时候的每一条边的信息,然后将这些信息进行汇总,处理起来稍有一些繁琐。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 100010;
int fa[maxn],
dep[maxn],
size[maxn],
son[maxn],
top[maxn],
seg[maxn], seg_cnt,
rev[maxn];
vector<int> g[maxn];
void dfs1(int u, int p) {
size[u] = 1;
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == p) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v, u);
size[u] += size[v];
if (size[v] >size[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
seg[u] = ++seg_cnt;
rev[seg_cnt] = u;
top[u] = tp;
if (son[u]) dfs2(son[u], tp);
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
struct Node {
int l, r, cnt;
Node () {}
Node (int _l, int _r, int _cnt) { l = _l; r = _r; cnt = _cnt; }
Node reverse() { return Node(r, l, cnt); }
} tree[maxn<<2];
int n, lazy[maxn<<2], init_color[maxn];
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1
void push_up(int rt) {
tree[rt].l = tree[rt<<1].l;
tree[rt].r = tree[rt<<1|1].r;
tree[rt].cnt = tree[rt<<1].cnt + tree[rt<<1|1].cnt - (tree[rt<<1].r == tree[rt<<1|1].l ? 1 : 0);
}
void push_down(int rt) {
if (lazy[rt]) {
lazy[rt<<1] = lazy[rt<<1|1] = lazy[rt];
tree[rt<<1].cnt = tree[rt<<1|1].cnt = 1;
tree[rt<<1].l = tree[rt<<1].r = tree[rt<<1|1].l = tree[rt<<1|1].r = lazy[rt];
lazy[rt] = 0;
}
}
void build(int l, int r, int rt) {
if (l == r) {
tree[rt] = Node(init_color[rev[l]], init_color[rev[l]], 1);
return;
}
int mid = (l + r) / 2;
build(lson);
build(rson);
push_up(rt);
}
void update(int L, int R, int v, int l, int r, int rt) {
if (L <= l && r <= R) {
tree[rt] = Node(v, v, 1);
lazy[rt] = v;
return;
}
push_down(rt);
int mid = (l + r) / 2;
if (L <= mid) update(L, R, v, lson);
if (R > mid) update(L, R, v, rson);
push_up(rt);
}
Node query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return tree[rt];
push_down(rt);
int mid = (l + r) / 2;
if (L > mid) return query(L, R, rson);
else if (R <= mid) return query(L, R, lson);
else {
Node a = query(L, R, lson);
Node b = query(L, R, rson);
return Node(a.l, b.r, a.cnt + b.cnt - (a.r == b.l ? 1 : 0));
}
}
void chain_update(int u, int v, int val) {
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
update(seg[top[u]], seg[u], val, 1, n, 1);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
update(seg[v], seg[u], val, 1, n, 1);
}
vector<Node> res1, res2, res;
void chain_query(int u, int v) {
res1.clear();
res2.clear();
res.clear();
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
res1.push_back(query(seg[top[u]], seg[u], 1, n, 1));
u = fa[top[u]];
}
else {
res2.push_back(query(seg[top[v]], seg[v], 1, n, 1));
v = fa[top[v]];
}
}
if (dep[u] > dep[v]) res1.push_back(query(seg[v], seg[u], 1, n, 1));
else res2.push_back(query(seg[u], seg[v], 1, n, 1));
int sz = res1.size();
for (int i = 0; i < sz; i ++) res.push_back(res1[i].reverse());
sz = res2.size();
for (int i = sz-1; i >= 0; i --) res.push_back(res2[i]);
Node tmp = res[0];
sz = res.size();
for (int i = 1; i < sz; i ++) {
int delta = (tmp.r == res[i].l);
tmp.cnt += res[i].cnt - delta;
tmp.r = res[i].r;
}
cout << tmp.cnt << endl;
}
int m, a, b, c;
char op[2];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> init_color[i];
for (int i = 1; i < n; i ++) {
int u, v;
cin >> u >>v;
g[u].push_back(v);
g[v].push_back(u);
}
dep[1] = fa[1] = 1;
dfs1(1, -1);
dfs2(1, 1);
build(1, n, 1);
while (m --) {
cin >> op;
if (op[0] == 'C') {
cin >> a >> b >> c;
chain_update(a, b, c);
}
else {
cin >> a >> b;
chain_query(a, b);
}
}
return 0;
}
洛谷P2486 [SDOI2011]染色 题解 树链剖分+线段树的更多相关文章
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- bzoj2243[SDOI2011]染色 树链剖分+线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9012 Solved: 3375[Submit][Status ...
- B20J_2243_[SDOI2011]染色_树链剖分+线段树
B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
- 2243: [SDOI2011]染色 树链剖分+线段树染色
给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...
- BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)
题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...
- 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树
题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
随机推荐
- 机器学习之Adaboost算法原理
转自:http://www.cnblogs.com/pinard/p/6133937.html 在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习 ...
- js流星雨效果
css部分 div { border: 0px solid #fff; border-width: 0px 90px 2px 90px; border-color: transparent trans ...
- HTTP请求响应头信息
HTTP请求响应头信息 请求:(request) 组成部分: 请求行 请求头 请求体 请求行:请求信息的第一行 格式:请求方式 访问的资源 协议/版本 例如:GET /day0801/1.html H ...
- 【风马一族_Android】无线连接|调试Android手机
原文来自:http://www.cnblogs.com/sows/p/6269396.html (博客园的)风马一族 侵犯版本,后果自负 2017-01-10 15:03:31 准备阶段 1. 软 ...
- qt,pro文件中用于平台区分的写法
qt,pro文件中用于平台区分的写法 切记: 大括号和平台需要在同一行中,否则会失效 unix { TARGET = appname } macx { TARGET = appname2 } win3 ...
- MySQL数据库操作语句(cmd环境运行)
一.开启MySQL服务器 1, 通过windows提供的服务管理器来完成 windows键+R 输入: services.msc 2.在本地服务中打开其服务 3.在DOC命令行下 net stop ...
- Leetcode811.Subdomain Visit Count子域名访问计数
一个网站域名,如"discuss.leetcode.com",包含了多个子域名.作为顶级域名,常用的有"com",下一级则有"leetcode.com ...
- Effective Modern C++:05右值引用、移动语义和完美转发
移动语义使得编译器得以使用成本较低的移动操作,来代替成本较高的复制操作:完美转发使得人们可以撰写接收任意实参的函数模板,并将其转发到目标函数,目标函数会接收到与转发函数所接收到的完全相同的实参.右值引 ...
- nodeJs学习-08 cookie、session
http-无状态的:两次访问之间,无区别,cookie可解决 cookie:在浏览器保存一些数据,每次请求都会带过来: 弊端:可以查看修改,并不安全.大小有限(4K) 读取--cookie-parse ...
- oracle 创建新表,并复制旧表数据
需求 备份数据,用于恢复. 语法规则 CREATE TABLE NEW_TAB AS SELECT * FROM OLD_TAB WHERE 1=1; 或者 CREATE TABLE NEW_TAB ...