题目链接:https://www.luogu.org/problem/P2486

首先这是一道树链剖分+线段树的题。

线段树部分和 codedecision P1112 区间连续段 一模一样,所以我们在做这道题目之前最好去做一下这道题目的练习。

然后就是树链剖分的部分。

此部分支持两种操作:

  • 更新:这部分比较好实现;
  • 查询:这部分需要你记录树链查询的时候的每一条边的信息,然后将这些信息进行汇总,处理起来稍有一些繁琐。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 100010;
int fa[maxn],
dep[maxn],
size[maxn],
son[maxn],
top[maxn],
seg[maxn], seg_cnt,
rev[maxn];
vector<int> g[maxn];
void dfs1(int u, int p) {
size[u] = 1;
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == p) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v, u);
size[u] += size[v];
if (size[v] >size[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
seg[u] = ++seg_cnt;
rev[seg_cnt] = u;
top[u] = tp;
if (son[u]) dfs2(son[u], tp);
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
struct Node {
int l, r, cnt;
Node () {}
Node (int _l, int _r, int _cnt) { l = _l; r = _r; cnt = _cnt; }
Node reverse() { return Node(r, l, cnt); }
} tree[maxn<<2];
int n, lazy[maxn<<2], init_color[maxn];
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1
void push_up(int rt) {
tree[rt].l = tree[rt<<1].l;
tree[rt].r = tree[rt<<1|1].r;
tree[rt].cnt = tree[rt<<1].cnt + tree[rt<<1|1].cnt - (tree[rt<<1].r == tree[rt<<1|1].l ? 1 : 0);
}
void push_down(int rt) {
if (lazy[rt]) {
lazy[rt<<1] = lazy[rt<<1|1] = lazy[rt];
tree[rt<<1].cnt = tree[rt<<1|1].cnt = 1;
tree[rt<<1].l = tree[rt<<1].r = tree[rt<<1|1].l = tree[rt<<1|1].r = lazy[rt];
lazy[rt] = 0;
}
}
void build(int l, int r, int rt) {
if (l == r) {
tree[rt] = Node(init_color[rev[l]], init_color[rev[l]], 1);
return;
}
int mid = (l + r) / 2;
build(lson);
build(rson);
push_up(rt);
}
void update(int L, int R, int v, int l, int r, int rt) {
if (L <= l && r <= R) {
tree[rt] = Node(v, v, 1);
lazy[rt] = v;
return;
}
push_down(rt);
int mid = (l + r) / 2;
if (L <= mid) update(L, R, v, lson);
if (R > mid) update(L, R, v, rson);
push_up(rt);
}
Node query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return tree[rt];
push_down(rt);
int mid = (l + r) / 2;
if (L > mid) return query(L, R, rson);
else if (R <= mid) return query(L, R, lson);
else {
Node a = query(L, R, lson);
Node b = query(L, R, rson);
return Node(a.l, b.r, a.cnt + b.cnt - (a.r == b.l ? 1 : 0));
}
} void chain_update(int u, int v, int val) {
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
update(seg[top[u]], seg[u], val, 1, n, 1);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
update(seg[v], seg[u], val, 1, n, 1);
}
vector<Node> res1, res2, res;
void chain_query(int u, int v) {
res1.clear();
res2.clear();
res.clear();
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
res1.push_back(query(seg[top[u]], seg[u], 1, n, 1));
u = fa[top[u]];
}
else {
res2.push_back(query(seg[top[v]], seg[v], 1, n, 1));
v = fa[top[v]];
}
}
if (dep[u] > dep[v]) res1.push_back(query(seg[v], seg[u], 1, n, 1));
else res2.push_back(query(seg[u], seg[v], 1, n, 1));
int sz = res1.size();
for (int i = 0; i < sz; i ++) res.push_back(res1[i].reverse());
sz = res2.size();
for (int i = sz-1; i >= 0; i --) res.push_back(res2[i]);
Node tmp = res[0];
sz = res.size();
for (int i = 1; i < sz; i ++) {
int delta = (tmp.r == res[i].l);
tmp.cnt += res[i].cnt - delta;
tmp.r = res[i].r;
}
cout << tmp.cnt << endl;
} int m, a, b, c;
char op[2];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> init_color[i];
for (int i = 1; i < n; i ++) {
int u, v;
cin >> u >>v;
g[u].push_back(v);
g[v].push_back(u);
}
dep[1] = fa[1] = 1;
dfs1(1, -1);
dfs2(1, 1);
build(1, n, 1);
while (m --) {
cin >> op;
if (op[0] == 'C') {
cin >> a >> b >> c;
chain_update(a, b, c);
}
else {
cin >> a >> b;
chain_query(a, b);
}
}
return 0;
}

洛谷P2486 [SDOI2011]染色 题解 树链剖分+线段树的更多相关文章

  1. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  2. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  3. bzoj2243[SDOI2011]染色 树链剖分+线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9012  Solved: 3375[Submit][Status ...

  4. B20J_2243_[SDOI2011]染色_树链剖分+线段树

    B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...

  5. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  6. 2243: [SDOI2011]染色 树链剖分+线段树染色

    给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...

  7. BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)

    题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...

  8. 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树

    题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...

  9. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

随机推荐

  1. SVN failed: 405 Method Not Allowed

    SVN update 时,错误:PROPFIND request on '/svn/xxxx' failed: 405 Method Not Allowed. 解决办法如下: 第一步:查看SVN服务器 ...

  2. 替换文本:将文本文件中的所有src替换为dst

    题意: 将文本文件中的所有src替换为dst 方法一:使用String import java.io.File; import java.io.FileNotFoundException; impor ...

  3. 【SDOI2017】套路总结

    1 第一题是裸的反演: \[\begin{align} Ans&=\prod_{i=1}^n\prod_{j=1}^ma[(i,j)]\\ &=\prod_{d=1}^na[d]^{f ...

  4. DirectX11笔记(十)--Direct3D渲染6--PIXEL SHADER

    原文:DirectX11笔记(十)--Direct3D渲染6--PIXEL SHADER 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u01033 ...

  5. Loadrunner常用分析点

    Loadrunner常用的分析点 一.在Vuser(虚拟用户状态)中 1.Running Vusers:提供了生产负载的虚拟用户运行状态的相关信息,可以帮助我们了解负载生成的结果.(即用户在几分钟左右 ...

  6. UCloud-201809-001:Redis服务未授权访问漏洞安全预警

    UCloud-201809-001:Redis服务未授权访问漏洞安全预警 尊敬的UCloud用户,您好! 发布时间  2018-09-11更新时间  2018-09-11漏洞等级  HighCVE编号 ...

  7. word Stock Market Indices

    Stock Market Indices USA Africa Asia and Pacific Canada Europe Middle East South America Internation ...

  8. vue_qqmapdemo1

    腾讯地图vue组件,实现异步加载腾讯地图,坐标拾取器,支持按城市名称搜索. 搜索框样式依赖elementUI,不需要可删除顶部,地图部分无依赖项 //qqmap.vue <template> ...

  9. 阿里云发布敏感数据保护产品SDDP,数据贴身防护实现“外防内控”

    数据安全问题,尤其是个人信息保护问题,一直是所有企业和个人关注的重点问题,7月10日,阿里云针对云上企业正式发布一款敏感数据保护产品SDDP(Sensitive Data Detection and ...

  10. jupyter的简单操作

    jupyter简单使用 esc+ m 切换到标记模式 shift + enter 运行 a 向上新增代码块 b 向下新增代码块 dd 删除代码块 y python代码模式 file --- downl ...